
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including

suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite

1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

11-20-10 Final Report 01-12-10 to 11-27-10

4. TITLE AND SUBTITLE

Safety In Numbers

5a. CONTRACT NUMBER

N00014-10-C-0225

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

David Cok

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

GrammaTech, Inc.
317 N. Aurora Street

Ithaca, NY 14850

 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Office of Naval Research

875 North Randolph St. Suite 1102B

Attn: Sukarno Mertoguno

Arlington, VA 22203-1995

AGENCY ACRONYM(S)

SMDC-RDT

11. SPONSORING/MONITORING

 AGENCY REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution Statement A: Approved for public release; distribution is unlimited.

DESTRUCTION NOTICE – For classified documents, follow the procedures in DOD 5220.22-M, National Industrial Security

Program Operating Manual (NISPOM), Chapter 5, Section 7, or DOD 5200.1-R, Information Security Program Regulation, Chapter

IX. For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the

document.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Using large-scale distributed resources can help find vulnerabilities and malicious code. This project studied the feasibility of distributing

two kinds of static analyses of machine code across large-scale donated computational cycles: conventional static analyses for finding

bugs and vulnerabilities, and concolic execution to find test cases that trigger rare, possibly maliciously hidden, code paths. We

demonstrated that concolic execution is particularly suited to large-scale distributed execution since its core computational loop is very

parallelizable and communication costs are small. We assessed a large number of possible parallel architectures and experimented in

depth with three. In the process of expanding and scaling our concolic engine for this application, we also devised a means to ‗fuzz‘ its

semantic representation of machine code and so were able to demonstrate a general technique for validating abstract representations of

machine code semantics.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT:

18. NUMBER

OF PAGES

104

19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT

b. ABSTRACT

c. THIS PAGE

 Sukarno Mertoguno
19b. TELEPHONE NUMBER (Include Area Code)

 202.577.3887

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

1

Project Final Report

Report Date: November 27, 2010

For the period 1/12/2010 to 11/27/2010

Contract Number: N00014-10-C-0225

Sponsor: Office of Naval Research (ONR)

Title: Safety In Numbers

 Submitted by: GrammaTech, Inc.

 317 North Aurora Street

 Ithaca, NY 14850-4201

Project Manager:

David Melski

Tim Teitelbaum

(607) 273-7340 x23

(607) 273-8752 [fax]

melski@grammatech.com

Financial Data Contact:

Krisztina Nagy

(607) 273-7340 x17

(607) 273-8752 [fax]

knagy@grammatech.com

Administrative Contact:

Krisztina Nagy

(607) 273-7340 x17

(607) 273-8752 [fax]

knagy@grammatech.com

Contributors: David Cok, John Phillips, Scott Wisniewski, Suan Hsi Yong, Nathan Lloyd,

Lindsay Kuper, Denis Gopan, Alexey Loginov

http://wiki.grammatech.com/bin/view/DSAofBinaries/WebHome

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

2

Abstract

Using large-scale distributed resources can help find vulnerabilities and malicious code. This

project studied the feasibility of distributing two kinds of static analyses of machine code across

large-scale donated computational cycles: conventional static analyses for finding bugs and

vulnerabilities, and concolic execution to find test cases that trigger rare, possibly maliciously

hidden, code paths. We demonstrated that concolic execution is particularly suited to large-scale

distributed execution since its core computational loop is very parallelizable and communication

costs are small. We assessed a large number of possible parallel architectures and experimented

in depth with three. In the process of expanding and scaling our concolic engine for this

application, we also devised a means to ‗fuzz‘ its semantic representation of machine code and

so were able to demonstrate a general technique for validating abstract representations of

machine code semantics.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

3

Table of Contents

Abstract ... 2

Table of Contents .. 3

List of Figures ... 6

Section I: Project Overview ... 9

1 Summary ... 9

2 Overview ... 11

3 Programmatics .. 11

3.1 Financial Summary .. 11

3.2 Milestone/Deliverable Schedule .. 11

3.3 Personnel .. 12

4 Introduction and Motivation for the project .. 14

Section II: Technical Accomplishments .. 18

5 Summary of Technical Accomplishments .. 18

6 Parallel static analysis ... 20

6.1 Static analysis on machine code ... 20

6.2 The question: are more bugs found with more computation? .. 21

6.3 Procedure.. 22

6.4 The test plan ... 22

6.4.1 Using non-determinism ... 22

6.4.2 Relaxing time constraints .. 23

6.4.3 Adjusting engine characteristics ... 23

6.5 Using non-determinism to fuel independent agents ... 23

6.6 Using multiple processors to increase available process bounds 25

6.7 Exploring parameters for possible combinations that strongly affect result quality 30

6.8 Conclusions from this study ... 30

7 Distributed concolic execution ... 31

7.1 Description of concolic execution .. 31

7.1.1 Distributed Dynamic and Hybrid Analyses .. 31

7.1.2 Test-Case Generation by Concolic Execution .. 32

7.1.3 The DASH Algorithm ... 34

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

4

7.2 Possible architectures for a parallel GraCE ... 35

7.2.1 Central work queue of input tasks .. 35

7.2.2 Central queues of tracing, resolution, and input tasks .. 36

7.2.3 Randomized independent agents ... 36

7.2.4 Divided input space... 37

7.2.5 Divided execution path space ... 38

7.2.6 Goal driven concolic execution .. 39

7.2.7 Seeded with regression tests ... 39

7.2.8 Fine grained parallelization of the engine ... 40

7.2.9 Combinations .. 40

7.3 Selection of designs to prototype ... 40

7.3.1 Independent engines with random initial inputs ... 41

7.3.2 Independent engines with crafted initial inputs .. 42

7.3.3 Multiple engines with a shared work queue ... 43

7.4 Implementation work ... 44

7.5 Assessment of performance results .. 44

7.5.1 Small, ―toy‖ programs created just for this purpose. .. 45

7.5.2 Medium-size programs that do real work. .. 62

7.5.3 Larger programs that do real work. ... 68

8 Reliability and performance testing of the concolic engine .. 69

9 Robustness and scalability improvements to the concolic engine .. 71

9.1 Optimizing concolic execution .. 71

9.1.1 Modify and improve SDT utility .. 71

9.1.2 Modifying the concolic engine ... 71

9.1.3 Installing and testing the framework for distributed computation 72

9.2 General problem correction .. 72

10 Correctness of the underlying machine code semantics ... 75

10.1 TSL ... 75

10.2 TSL Validation ... 75

10.2.1 EmuFuzzer .. 76

10.2.2 GrammaTech‘s validator .. 77

10.2.3 Validator Architecture .. 79

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

5

10.2.4 Fuzz Testing .. 81

10.2.5 Tests .. 82

10.2.6 Limitations .. 82

10.3 Experimental Results .. 83

10.4 Abstract Analysis ... 83

10.5 Test Infrastructure .. 84

10.6 Testability ... 84

10.7 Simple Value Set Analysis ... 84

10.8 Simple VSA Results ... 85

11 Using the cloud to find malicious code ... 86

11.1 Introduction .. 86

11.2 Benefits of distributed computation ... 87

11.3 Requirements .. 88

11.4 Technical and Social Challenges .. 89

11.4.1 Algorithmic Requirements .. 90

11.4.2 Security Concerns ... 91

11.4.3 Community Creation and Coherence .. 93

11.5 Conclusions .. 94

Section III: Concluding Material .. 95

12 Related Research ... 95

12.1 Static and Dynamic Analysis ... 95

12.2 Mining Temporal Specifications .. 96

12.2.1 Mining Dynamic Information ... 96

12.2.2 Mining Static Information... 96

12.3 Passive Feedback for Cooperative Bug Isolation (CBI)... 96

12.4 Efforts to Harness Donated Computation Cycles ... 97

13 Conclusions and Recommendations ... 98

14 References ... 100

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

6

List of Figures

Figure 1 The fraction of the total unique warnings as a function of the analysis run number for an

arbitrary ordering of the 20 analysis runs. .. 24

Figure 2 Fractional improvement in the number of unique warnings generated by increasing the

bounds on a collection of analysis parameter in CodeSonar. (See the text for the applicable

parameters) The bounds were increased to twice, four times, and eight times the current default

values and the same code base was re-evaluated. The fractional increase in the number of unique

warnings generated is not large, and if the trend established in this study continues for higher

values, then it has already reached the point of diminishing returns .. 26

Figure 3 A schematic representation of the overlap between warnings produced by source code

analysis, and warnings produced by binary executable analysis. Note that the source code

analysis has access to information about variable type, code structure and other things that are

not available in the binary executable (because the compiler does not place that information in

the binary). Similarly, the compile performs many transformations that are not available in an

analysis of the source code. .. 27

Figure 4 Improvement in the fraction of the generated warnings from binary analysis that match

those generated by source code analysis as a function of the increase in the affected parameters.

The dependent axis shows the fraction as a percent of the initial value. Multiple values are

reported for an increase of eight times because two different runs were performed at that value to

estimate the effect of non-determinism on these results. Note that the non-determinism effects

are of the same scale as the increased parameter effects. ... 28

Figure 5 Improvement in the fraction of warnings generated only by the binary analysis as a function

of the increase in the parameters describing the algorithm. As before, the dependent axis shows

the improvement as a percent of the original value. ... 29

Figure 6 Increase in the execution time as a function of parameter values. This is not a conclusive set

of data, since the variation based on non-determinism is similar in scale to the increase as the

parameters increase. However, a trend toward increasing time is consistent with this graph. 29

Figure 7 Only one input (foo(true,false)) elicits the division by zero at F. Complete code coverage

(i.e., A, B, C, D, E, and F are all tested) and complete branch coverage (i.e., BC, BD, DE,

and DF are all tested) can be obtained (e.g., with foo(false, false) and foo(true, true)) without

eliciting the error. Concolic execution achieves complete path coverage — all paths through the

code are covered — by generating all four possible inputs. ... 32

Figure 8 Schematic representation of the architecture of the independent agents with random seeding

design .. 41

Figure 9 Schematic representation of the architecture of the independent agents with crafted initial

inputs design ... 42

Figure 10 Schematic representation of the architecture of the shared work queue design 43

Figure 11: Speedup of misc.002 for the shared queue prototype ... 47

Figure 12: Efficiency of misc.002 for the shared queue prototype ... 48

s

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

7

Figure 14 The total number of paths produced by a cluster of independent agents starting from

random seeds, and the number of those paths that are unique, both as a function of the size of the

cluster. ... 50

Figure 15: Unique work done by the random initial input and crafted initial input prototypes as a

function of the number of processors in the cluster. The measure is just the number of unique

execution paths generated divided by the total number of execution paths generated by the

measured cluster. Uniqueness of the execution path is determined by whether the sequence of

blocks traversed in the trace is unique. ... 51

Figure 16: Unique work as a fraction of total work done by the random initial inputs and crafted

initial inputs prototypes for test subject misc.003 .. 52

Figure 17: Parallel efficiency for the shared queue prototype running 5000 iterations on test

misc.003 .. 53

Figure 18: Boss communications times for 5000 iterations of misc.003 with the shared queue

prototype. Total wall clock run time for 20 processors was ~800 seconds, so communications

were never more than 2% of total run time. .. 54

Figure 19: Wall time in seconds for 1000 iterations of misc.003 with 4 KB of extra data loaded on

each communication of an input set. The times for this test are averaged from multiple runs of

each configuration to minimize the influence of uncontrolled factors in the cluster. Run times are

very similar to those measured with no additional load, and also show efficiency scaling close to

the no additional load case .. 54

Figure 20: Time to run 1000 iterations of misc.003 on a 20 node cluster with varying extra data load.

The load runs from a minimum value of 0.25 KB, up to 16 MB. Run times are reasonably stable

with extra loads of up to 64 KB, but increase quickly with larger loads 56

Figure 21: The fraction of the total run time for the queue boss process that was spent actively

processing communications requests. ... 56

Figure 22: Fraction of worker process run time while analyzing misc.003 used in communications

functions as a function of the additional data load. Note the extreme transition in behavior

between 64 KB and 1 MB ... 57

Figure 23: Average time spent transferring 1 MB of data between processes as a function of the

additional data loaded into the process while analyzing misc.003. Transfers get markedly more

efficient as the size of the data package increases .. 58

Figure 24: The average time taken to send one message containing an input set while analyzing

misc.003, as a function of the additional data loaded into the input set. Although the figure above

shows that the communications get more efficient as the messages get larger, this figure shows

that the growth in size of the messages scales faster, so the net result is that each message takes

longer. ... 58

Figure 25: Fraction of unique work produced by the random initial inputs and crafted initial inputs

prototypes for no_validation.003 as a function of the number of nodes in the cluster 60

Figure 26: Fraction of unique work produced by the crafted initial inputs prototype for

no_validation.005 as a function of the number of nodes in the cluster .. 61

Figure 27: Fraction of unique work done by the crafted initial inputs prototype on validation.003 as a

function of the number of nodes in the cluster. .. 62

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

8

Figure 28 [AI_test.002] Fraction of unique work done by the random initial inputs and crafted initial

inputs prototypes on ai_test.002 as a function of the number of nodes in the cluster 63

Figure 29: Parallel speedup for the shared queue prototype applied to ai_test.002 63

Figure 30: Efficiency for the shared queue prototype applied to ai_test.003 as a function of the

number of nodes in the cluster .. 64

Figure 31: Measuring the start up costs due to queue filling for the shared queue prototype applied to

ai_test.002. Note that the data values for 20 processors and 16 processors happen to overlay for

both 25 iterations and 100 iterations. .. 65

Figure 32: Total time spent performing active communications for the shared queue prototype as a

function of the additional communications load. .. 65

Figure 33: Fraction of the total boss process run time spent on communications for the shared queue

prototype analyzing ai_test.002. Loads run from 4 KB to 4 MB, but notice even the worst case

time is only just over 2% .. 66

Figure 34: Fraction of unique work produced by the random initial inputs prototype applied to

ai_test.003 as a function of the number of nodes in the cluster .. 67

Figure 35 Fraction of unique work done by the random initial inputs prototype applied to ai_test.004

as a function of the number of nodes in the cluster .. 68

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

9

Section I: Project Overview

1 Summary

Finding malicious or vulnerable code in masses of software is a challenging and

computationally-intensive task. Highly-distributed computing using donated resources has been

used to good effect on challenging, computationally-demanding scientific problems. This project

investigated applying parallel or distributed computation at large scale to finding more code

vulnerabilities than can simple time-bound serial execution. The results of the project are

summarized under the following five headings:

1) [Section Error! Reference source not found.] We assessed the advantages and

disadvantages of using highly distributed computing with volunteered computational resources.

The advantages are straightforward: more computation is performed. The disadvantages are

primarily social and security-related: can the various participants in a donated-computation

relationship trust each other. The person donating computational cycles must trust that the

computation being performed will not overly tax the donated computer and will not act

maliciously or carelessly; the person doing the computation must trust that the donated resources

will neither subvert nor expropriate the computation being performed.

The actual technical work of distributing a computation across a volunteer network has been

well-demonstrated and we did not repeat that work here. What is needed is to determine whether

the desired computation can be divided into sufficiently independent computational units and can

be performed efficiently in a parallel fashion. We investigated that question in Sections 6 and 7.

2) [Section Error! Reference source not found.] The project investigated whether applying

more computation to conventional static analysis would increase the number of problems found.

In particular, we studied a GrammaTech tool that finds problems in binary code (without source

code) – the CodeSonar/x86 tool. The tool has a number of internal parameters that are

heuristically set to constrain the time consumed by the computation to reasonable bounds. By

relaxing those restrictions, we investigated what improved bug-finding performance we could

obtain with additional processing. We found that, while some additional benefit was obtained, it

was not worth the additional time taken, and not worth the considerable effort to parallelize the

computation. This is not to say that the static analysis cannot be improved; rather that significant

improvements will require changes to the underlying logic and reasoning engine, rather than by

adjusting parameters of the existing algorithms.

3) [Section Error! Reference source not found.] We also investigated a second technique for

finding problems in machine code: concolic execution. In particular we investigated parallelizing

GrammaTech‘s GraCE tool. This tool executes a subject program on a given input, records the

machine code instructions that are executed, translates the execution (including all the branches

taken) into logical constraints, and then uses a constraint solver to find alternate program inputs

that will cause the program to take different branch directions and therefore new program paths.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

10

The tool generates a high-coverage test suite that exercises many combinations of branches and

many different execution paths.

This tool is highly parallelizable. We assessed many alternative parallel architectures for the

prototype, choosing three for implementation and experimentation. One simple architecture is to

simply start N copies of the analysis engine on different random inputs, with no communication

other than assembling all of the results at the end. We found that for typical programs the

independent processes were prone to repeat work that other processes had already performed;

hence the overall efficiency of using multiple processors suffered significantly.

An improvement is to carefully choose the starting inputs for the N independent processes to

avoid some of the repeat work. This does improve the overall efficiency, but not always

significantly, and the technique does require expert knowledge of the subject program in order to

choose good inputs.

The best architecture is a shared queue for program inputs to be analyzed, managed by a single

controller process; identical worker processes take inputs from the queue, analyze the inputs, and

adding new analysis tasks back to the queue; as each worker completes its analysis task, it

obtains a new task from the shared queue. The communication overhead (of the program inputs

and the analysis results) is very modest.

This architecture is very suited to a network of volunteer processors; it can readily adapt to a

varying supply of available computation and to processors that may be unreliable or even to

some degree untrustworthy.

4) [Sections 8, 9] We made reliability and scalability improvements in the overall GraCE tool in

order to carry out the experiments described above. The most interesting of these was turned into

a research investigation of its own, described in the next paragraph.

5) [Section 10] A tool that reasons about machine code programs implicitly encodes a translation

of each machine code instruction into a logical statement. In our tool we make that translation

explicit through a language called TSL [59]. TSL provides a framework in which each machine

code instruction is mapped to a corresponding statement in a Quantifier-Free Bit Vector (QFBV)

logic. For any such translation, one can ask this question: is the representation as a logical

constraint correct? If it is not, the reasoning about the machine code will not match the actual

execution of the machine code.

We decided to test the QFBV representation as follows. We automatically generated small

programs consisting of single machine code instructions. We prepared a random initial state of

memory and registers and executed the instruction on that state. We also abstracted a logical

representation of the initial state, the instruction semantics, and the final state. For each test we

can compare the actual final state with the logical final state obtained by applying the logical

abstraction of the instruction to the abstract initial state. The results of many such tests over the

large number of x86 instructions and many instantiations of random initial states are presented in

the full report; there was not time within the contract to understand all of the discrepancies –

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

11

some are outright bugs in the semantics and others represent undocumented subtleties of the

machine instructions.

We also demonstrated a proof of concept prototype that the technique of the previous paragraph

can be applied to a variety of abstract interpretations of underlying machine semantics, and not

just to a specific concrete interpretation of the machine code.

Conclusion: The overall conclusion of the project is that highly distributed processing can be

used to advantage in checking software for bugs or vulnerabilities. In particular, deriving test

suites through concolic execution is particularly amenable to parallel processing. The project

demonstrated this through experiments with a prototype on open source software obtained from

public sources.

2 Overview

This report summarizes the technical accomplishments of the Safety in Numbers project,

sponsored by ONR and executed by GrammaTech. Section 3 provides some programmatic

information. Section 4 describes the motivation and background for the project. Section 5

summarizes the areas of technical effort; detailed reports on each of these are then provided in

Sections 6-11, each describing its own methods and conclusions. Section 12 describes previous

work in these areas, and section 13 summarizes overall conclusions and recommendations.

3 Programmatics

3.1 Financial Summary

Total contract amount (one year) $300,000.00

Costs incurred during the performance period $300.000.00

3.2 Milestone/Deliverable Schedule

Milestone or deliverable
Planned Delivery/
Completion Date

Actual Delivery/
Completion Date

Create work environment 02/28/2010 02/25/2010

Complete architecture review 02/28/2010 02/28/2010

Identify parametric constraints in the static analysis
engine to relax in the parameter study

02/28/2010 02/20/2010

Develop plans for different ways to parallelize a
concolic execution engine

03/30/2010 03/25/2010

Submit April quarterly report 04/12/2010 04/12/2010

Measure potential benefits of coarse grained 04/12/2010 03/20/2010

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

12

3.3 Personnel

The following personnel contributed to the project activities.

Prof. Tim Teitelbaum was a co-PI for this effort. Teitelbaum is Chairman of GrammaTech and

is also a faculty member in the Department of Computer Science at Cornell University, which he

joined in 1973. His pioneering work on programming environments and incremental

computation is widely cited in the literature. His Publications include [9, 16, 30, 69, 75].

parallelism for concolic execution engine

Analyze measurements on concolic engine 04/20/2010 03/24/2010

Select a plan for the first prototype 04/21/2010 03/25/2010

Develop detailed design for first prototype 04/25/2010 03/30/2010

Begin coding of first prototype 04/25/2010 03/30/2010

Measurements of the effect of changing parametric
constraints on the static analysis engine

04/30/2010 03/29/2010

Determine list of prototypes to develop 04/30/2010 4/30/2010

Analyze measurements on static analysis engine 05/30/2010 7/14/2010

Complete first working prototype 05/31/2010 7/7/2010

Decision on benefits and plan for parallelization of
static analysis engine

06/15/2010 06/15/2010

Build testing infrastructure for correctness,
robustness, performance, and coverage

07/01/2010 06/25/2010

Identify issues for scalability and robustness of GraCE 06/30/2010 06/20/2010

Modify GraCE to address identified issues 10/01/2010 10/15/2010

Validate representation of machine code semantics
used by GraCE

09/01/2010 10/31/2010

Submit July quarterly report 07/12/2010 07/13/2010

Assess the benefits and pitfalls of using large scale
parallel computation to detect malware

07/15/2010 8/31/2010

Complete report on using large scale parallelism to
detect malware

07/31/2010 11/27/2010

Complete implementation of all planned prototypes 07/31/2010 8/15/2010

Submit October quarterly report 10/12/2010 10/12/2010

Complete assessment of prototype performance on
large application benchmarks

11/01/2010 11/15/2010

Submit final report on first year’s work 11/27/2010 11/27/2010

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

13

Dr. David Melski was co-PI of the project. He is the vice-president of research at GrammaTech

and has overseen many successful projects. Dr. Melski graduated summa cum laude from the

University of Wisconsin in 1994 with a B.S. in Computer Sciences and Russian Studies. He

received his Ph.D. in Computer Sciences from the University of Wisconsin in 2002, where his

research interests included static analysis, profiling, and profile-directed optimization. His

publications include [17, 46, 64, 70].

Dr. David Cok, hired into GrammaTech in January, collaborated in directing the scientific

direction and implementation work of the project. He is a technical expert and leader in static

analysis, software development, computational science and digital imaging. He has been a major

contributor to JML and Esc/Java2 for Java applications; his particular interests are the usability

and application of static analysis and verification technology for industrial-scale software

development. Prior to GrammaTech, Dr. Cok was a Research Fellow in the Kodak Research

Laboratory and held technical leadership and managerial positions. He received a Ph.D. in

Physics from Harvard University in 1980.

Dr. Denis Gopan is an expert on concolic processing and will contribute to the analysis and

rearchitecting of the concolic engine. He received a B.Sc. in Computer Science from the

University of Wisconsin-Milwaukee in 1996 and a Ph.D. in Computer Science from the

University of Wisconsin-Madison in 2007. His research interests are static program analysis and

verification. While at Wisconsin, Dr. Gopan was awarded the CISCO fellowship for two

consecutive years.

Mr. John Phillips has many years of experience in parallel computing, high performance

computing, and C++, including more than nine years of involvement in the Boost collaboration.

Prior to joining GrammaTech in January 2010, he was a member of the faculty at Capital

University in Mathematics, Computer Science, and Physics and completed several NSF and

DoE-funded projects in Astrophysics and Computational Science.

Other contributing engineers were Alexey Loginov, Scott Wisniewski, Ducson Nyugen, and

Suan Hsi Yong, and summer interns Lindsey Kuper and Nathan Lloyd.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

14

4 Introduction and Motivation for the project

The goal of the Safety In Numbers project is to find improved ways to detect malicious code in

otherwise commonly used software and, in particular, to do so by leveraging possibilities for

parallel static and hybrid analysis using multi-core processors or multiple processors in local or

large-scale grid combinations.

The global information grid has changed the nature of what is possible in a very short time span.

One important effect is the new ways in which communities form and gain leverage on

previously intractable problems. For example, it is now possible for an encyclopedia written by

volunteers (Wikipedia) to rival those that are collated by professionals. Similarly, Linux has

demonstrated that operating systems are no longer solely the domain of well-funded, commercial

enterprises. Google‘s online email system, Gmail, leverages feedback from its user community

to create effective spam filters. Programs such as Folding@Home rely on a community willing to

donate spare computational cycles to help with research on causes of disease and the

development of new treatments. On the darker side, malicious actors are able to co-opt tens of

thousands of user machines to create artificial communities (botnets) that launch cyber attacks or

send spam.

None of these are new observations. Many books have been written about the significance of the

digital age, and we cannot hope to summarize all of its ramifications here. Our concern is with

developing a new approach for improving the security of computer systems, one that leverages

the new realities of the global information grid, rather than fighting them. As mentioned above,

online communities can provide new leverage on intractable problems. In this project, we

focused on the problem of detecting malicious code, although we anticipate that the work will

also be applicable to defect detection. (Unintentional defects and malicious code can share many

characteristics and may be hard to distinguish.) The 2007 report from the DoD Defense Science

Board Task Force on the ―Mission Impact of Foreign Influence on DoD Software‖ identified

detection of malicious code as a high priority for the DoD [2]:

There are two distinct kinds of vulnerabilities in software. The first is the common “bug”, an

unintentional defect or weakness in the code that opens the door to opportunistic

exploitation. The Department of Defense shares these vulnerabilities with all users. However,

certain users are “high value targets”, such as the financial sector and the Department of

Defense. These high-value targets attract “high-end” attackers. Moreover, the DoD also

may be presumed to attract the most skilled and best financed attackers—a nation-state

adversary or its proxy. These high-end attackers will not be content to exploit opportunistic

vulnerabilities, which might be fixed and therefore unavailable at a critical juncture.

Furthermore, they may seek to implant vulnerability for later exploitation. It is bad enough

that this can be done remotely in the inter-networked world, but worse when the malefactors

are in DoD’s supply chain and are loyal to and working for an adversary nation-state—

especially a nation-state that is producing the software that the U.S. Government needs.

There is no simple approach to eliminate the threat of malicious code. Building trustworthy

software is a cradle to grave operation, and may require dramatic changes in current practices.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

15

Trust issues must be considered during design, development, integration, deployment, daily use,

maintenance, and upgrading. Accounting for who authored a piece of software and under what

conditions may be as useful as examining code when judging malicious intent.

At the end of the day, answering questions about software malice must include analysis of the

machine code that will actually run on the hardware. This is partly because of the WYSINWYX

effect. WYSINWYX stands for ―What You See (in source code) Is Not What You eXecute (on

the machine).‖ The WYSINWYX effect can arise for many reasons including source-language

ambiguities, compiler errors, and use of third-party components. The significance of the

WYSINWYX effect is that it can undermine any evaluation of software that is based (solely) on

artifacts generated during the software‘s development, up to and including the source code. As a

practical matter, source code is often unavailable, to say nothing of other data concerning the

software‘s development. For these reasons, our primary interest will be in techniques that make

analysis of machine code more effective. The findings of the Defense Science Board recognize

the need for machine-code analysis and explicitly cite GrammaTech‘s work as one of three

research efforts on machine-code analysis that ―are already beginning to bear substantial fruit‖

[2].

Machine-code analysis presents a challenging technical hurdle for many reasons. Few people are

trained in understanding machine code. Machine code comes without helpful information found

in source code (such as types). There have been many recent breakthroughs, including value-set

analysis [13], concolic execution [47, 72], and verification by testing [20]. However, there are

still major challenges in achieving scalability and performing analysis of entire systems. We

believe that online communities provide new leverage on these problems in many ways,

including:

1. Donation of spare computation cycles. In this model, community members volunteer to

run partial computations on their (personal) computers when they are otherwise idle. The

partial computations are then assembled into a complete problem solution. In this case we

refer to the community as a computational community that performs a distributed

computation. In the past, this approach has been used to demonstrate the danger of using

short (56-bit) keys for encryption (e.g., with DES or RC5) [45]. Today, it is used to

understand protein folding [10]. IBM‘s World Community Grid is slated to help discover

new materials for use in solar cells [37]. We envisage that donated cycles might enable

deeper and more accurate analysis of machine code. In particular, this may be an instance

where the quantitative increase in computation power leads to a qualitative change by

enabling more expensive analyses and allowing them to be applied to entire software

systems.

2. Passive feedback from user communities. Using this approach, community members

allow observation of their computer systems under normal usage. The observations are

used to build more accurate models of their software. The feedback is passive in the sense

that community members do little or nothing to generate the feedback beyond their

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

16

normal interactions with the system. A simple but effective example of this approach is

the Dr. Watson tool on Windows platforms. Dr. Watson allows Microsoft to collate

reports about program crashes and has proven very useful for improving platform

reliability [55]. Liblit developed a more sophisticated approach called Cooperative Bug

Isolation that incorporates statistical analysis of the feedback in order to isolate bug

causes [56]. In our case, we believe passive feedback could result in more accurate

models of the system that are useful for identifying malicious behavior.

3. Active feedback from user communities. This technique leverages the wisdom of the

community by soliciting active feedback from community members. As mentioned

above, Gmail leverages user feedback (via the ―Report Spam‖ button) to train its spam-

filtering tool. Recommendation systems such as Netflix‘s ―Cinematch‖ rely on user-

provided ratings to identify similarities in taste and suggest movies to customers. One of

the challenges we face is that ―malice‖ can be context dependent. An application that

broadcasts your current GPS coordinates may take off as a ―cool new app‖ for the

iPhone, but the same feature on a Navy system would be treasonous. In this sense,

identifying malice may be similar to suggesting movie titles, but with much higher

stakes. In general, it is also much more difficult for community members to reliably

identify malicious software behavior than their own movie preferences. Nevertheless,

Gmail has demonstrated that at least in some cases, user feedback is valuable for

identifying malice (i.e., spam).

Leveraging community support (as outlined above) comes with its own set of technical

challenges. The entire community effort is at risk if malicious actors can subvert or co-opt the

results, for example, by feeding false information to coordinators. An open community built

from volunteers may contain spies who could set up competing communities. For example,

organized crime could steal a distributed security analysis, run the analysis on a botnet, and

discover and exploit vulnerabilities before they can be patched. Feedback mechanisms (either

passive or active) run the risk of leaking the private or classified information of the community

members.

There are also challenges that are more economic or political than technical. These issues must

not be ignored: too many great technical solutions to the problem of computer security have

failed because they did not consider the non-technical requirements. For example, proof-carrying

code is an approach for guaranteeing that software is free of certain vulnerabilities. Microsoft‘s

Singularity project demonstrated a novel architecture for an operating system that is more secure

(and possibly more efficient) than existing OS architectures. However, in important ways, these

efforts are at odds with existing economic realities of software development and deployment.

Proof-carrying code requires new development and deployment tools. Singularity was orphaned

because it would be too costly to provide backwards compatibility with existing products. Java is

another effort that attempted to tackle software security issues with a novel platform architecture

(the Java VM). Arguably, it has been more successful than other efforts because Sun marketed it

with an economic incentive for its adoption (i.e., cross-platform portability).

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

17

In this single year project, we have tackled one of the above research challenges: determining the

value of parallel processing for finding vulnerabilities in software. The ability to distribute a

sufficiently parallel computation across a network of volunteer computers has been demonstrated

in actual practice; thus, in this project we concentrated not on the details of cloud computation or

obtaining donated cycles, but rather on the question of whether static analysis for finding

malicious code or simple vulnerabilities can actually be distributed across many computers to

advantage.

GrammaTech was well-positioned to investigate this question. It has a staff of researchers with

extensive experience in program analysis; it has a facility clearance and employees with secret

and top-secret clearances; and it has a long-standing research collaboration with highly

successful academic research in program analysis at the University of Wisconsin which informs

our research even in cases where U. Wisconsin is not a direct contributor to the research work.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

18

Section II: Technical Accomplishments

5 Summary of Technical Accomplishments

The technical work of this project can be grouped into the following topic areas. Reports on each

of these topics are provided in sections 6 - 11.

1. Assessment of parallel processing options in the static analysis tools CodeSonar and

CodeSonar/SWYX. [Section 6]

2. Assessment and optimization of the parallel processing options in GrammaTech‘s

concolic execution engine (GraCE). [Section 7]

a. Evaluating many designs for parallel processing

b. Implementing three chosen designs

c. Measuring the performance of the designs along several axes

3. Testing and improving the underlying technology [Sections 8 and 9]

4. Validating the instruction semantics [Section 10]

a. Validating the concrete semantics underlying GraCE

b. Implementing a method for testing abstract representations

5. Evaluating the issues with using the cloud for analyzing malicious code [Section 11]

Relationship to the Statement of Work

The deliverables of the contract are interim and final reports describing the research findings.

The tasks of Statement of Work are listed below.

1. The contractor will investigate techniques based on the donation of spare cycles by a grid of

computing resources.

We investigated existing techniques for harvesting spare cycles. Our parallel

implementation of the concolic engine works side-by-side with other activity on the

machines being used, using their spare cycles. Our conclusions regarding this task are

described in sections 7 and 11.

2. The contractor will investigate existing techniques for grid computation and techniques to

safely leverage grid computation for analysis of malicious code and software security.

We investigated two approaches: static analysis tools and the concolic engine. Section 6

contains the analysis of parallelizing static analysis and section 7 describes the work on

the concolic engine.

3. The contractor will identify one promising approach based on grid computation investigate it

in depth.

The more promising approach was the concolic engine, GraCE. We investigated many

designs, and then we implemented and measured the performance of three designs in

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

19

local networks. The results enable us to make projections about extrapolations to larger-

scale, grid-organized computation. These results are described in Section 7, with related

work described in sections 8-10.

4. The contractor will generate a report describing potential uses and pitfalls of applying grid

computation to program analysis.

This report is contained in section 11.

5. The contractor will brief the government on progress of the research upon request.

Quarterly reports were submitted in April, July, and October 2010. On on-site briefing

occurred on July 12. Briefing material was supplied as requested in March and April

2010.

6. The contractor will write status reports for the government upon request.

An introduction and current summary was supplied as requested in March 2010.

7. The contractor will generate a final report summarizing the results of all research.

This report fulfills this item.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

20

6 Parallel static analysis

The project assessed two technologies as candidates for aiding the finding of malicious code

using distributed computation. One of those technologies is static analysis as implemented in

GrammaTech‘s CodeSonar tool. (The other technique – concolic execution is described in

section 7.) This section describes the experiments we conducted to determine what gains could

be obtained by parallelizing static analysis.

6.1 Static analysis on machine code

Recent research in programming languages, software engineering, and computer security has led

to new kinds of tools for analyzing code for bugs and security vulnerabilities [18, 24-26, 32, 38,

42, 49, 50, 78]. In these tools, static analysis is used to determine a conservative answer to the

question ―Can the program reach a bad state?‖ Static analysis provides a way to obtain

information about the possible states that a program reaches during execution, but without

actually running the program on specific inputs. Static-analysis techniques explore the program‘s

behavior for all possible inputs and all possible states that the program can reach. To make this

feasible, the program is ―run in the aggregate‖—that is, on descriptors that represent collections

of memory configurations [33].

In principle, such tools would be of great help to an analyst trying to detect malicious code

hidden in software, except for one important detail: the aforementioned tools all focus on

analyzing source code written in a high-level language. GrammaTech and the University of

Wisconsin collaborated on the problem of finding bugs and security vulnerabilities in programs

when source code is unavailable. Our goal was to create a platform that carries out static analysis

on executables and provides information that an analyst can use to understand the workings of

potentially malicious code, such as COTS components, plug-ins, mobile code, and DLLs, as well

as memory snapshots of worms and virus-infected code. A second goal is to use this platform to

create tools that an analyst can employ to determine such information as

 whether a program contains inadvertent security vulnerabilities and

 whether a program contains deliberate security vulnerabilities, such as backdoors, time

bombs, or logic bombs.

We have developed a tool, called CodeSurfer/x86, that serves as a prototype for a next-

generation platform for analyzing executables. CodeSurfer/x86 provides a security analyst with a

powerful and flexible platform for investigating the properties and possible behaviors of an x86

executable. It uses static analysis to recover an IR that is similar to those that a compiler creates

for a program written in a high-level language [13, 54, 67, 68, 70].

Despite the difficulty in performing IR recovery, CodeSurfer/x86 has advanced far enough to

start producing results. Balakrishnan and Reps recently demonstrated the use of IR recovery in

analysis of Windows device drivers [15]. Specifically, [15] demonstrated two results. First, that

CodeSurfer‘s IR recovery produces precise results on device drivers. Second, that by building on

the recovered IR, the researchers could adapt a technique for analyzing the source code of device

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

21

drivers [19] to analyze machine code and find some of the same driver errors—while also side-

stepping the WYSINWYX effect [17] and garnering the benefits of machine-code analysis.

6.2 The question: are more bugs found with more computation?

In static analysis, the source or machine code of a software program is analyzed without actually

executing it. The instructions of the program are converted into logical statements in an abstract

representation of the program. Then automated reasoning engines are applied to that logical

representation to determine if various illegal or undesirable program states can be reached during

execution. If such states are or appear to be possible, the static analysis engine attempts to find

specific examples of program variables that can cause the illegal or undesirable state. Such

examples help the user decide whether the situation is indeed possible, given the context in

which the program is used, and the importance of the problematic condition.

Static analysis on a large program is very computationally intensive. Thus the results of practical

static analysis tools are not completely precise. Sometimes warnings of undesirable states are

given that will not actually occur in practice (false positives). This can happen because the static

analysis is only partial and cannot accurately assess the whole program without substantial user

input. For ease of use, most bug-finding static analysis tools avoid requiring significant amounts

of user input.

The parameters of a static analysis tool can be adjusted to avoid false positives by only reporting

problems for which there is a clear path from the beginning of the program. However, then the

tool will miss many other actual errors (false negatives). For example, it may take a more than

tolerable amount of computing time to find a path to some actual error; if the path is not found,

then an error that is actually present in the code will not be reported. False negatives and

positives can also occur because the logical abstraction of the program is only an approximation

of the true program.

In practice, a practical static analysis tool uses heuristically set limits on its logical reasoning and

search for error paths so that the tool efficiently finds possible errors in a reasonable amount of

time; this includes finding a useful balance between false positives and false negatives.

The question we asked in this study was whether increasing the limits on computation time and

altering internal parameters accordingly would cause more useful warnings to be found. For

example, suppose using twice the computation time would find twice the number of warnings;

then it would be worth asking (a) do those warnings correspond to true positives (actual errors),

at least as frequently as the warnings reported previously and (b) is there a parallel computation

design for the program that could accomplish that work with two processors without increasing

the overall clock time taken. However, if we do not find appreciably more warnings by

increasing the time taken, then it is not worth investigating parallel designs for the static analysis

tool.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

22

6.3 Procedure

To investigate this question we ran CodeSonar‘s SmashProof engine for several thousand hours,

varying a number of internal parameters that regulate the tradeoff between analysis depth and

performance. We allowed the tool to investigate the subject programs with more time than it

would under standard conditions and recorded the number of warnings reported in each case.

We did not assess whether the additional warnings were true or false positives; we assumed that

the additional warnings would be true positives in the same proportion as the original warnings.

There are arguments in either direction on this point. On the one hand, one might argue that

―most bugs are shallow‖, so that most real bugs are found without undue computation; additional

effort may indeed find more but less efficiently as more effort is expended. On the other hand,

the additional computation may be better at differentiating the bugs that with little effort appear

to be possible into those that, with more effort, are clearly not possible and those for which a

valid but lengthy path can be found. In that case the extra effort will be more effective on all

warnings. However, as will be apparent in the data presented below, we did not find a sufficient

number of extra warnings to warrant determining which warnings were true and which false.

Also, we did not actually run the computation in a parallel fashion. To do so would have required

a substantial programming design and implementation effort, with unclear future benefit. Instead,

we ran serial processes for longer. By doing so, we measure an upper bound to the benefit

achievable by parallelization. Typically the speed-up obtained by parallelization is less than

linear, because of the need for communication among cooperating parallel processes and the

inability to parallelize all of the computational steps.

6.4 The test plan

The testing plan included three different facets, described in the subsections below. Each facet

addresses a class of possible large scale parallel designs. The experiments and results for the

three pieces of the test plan are presented in detail in sections 6.5, 6.6, and 6.7.

6.4.1 Using non-determinism

The CodeSonar front end constructs an intermediate representation of the input (source code or

binary), and passes the representation to the analysis engine. The engine is non-deterministic
1
, so

one possible parallel design is to leverage that non-determinism. If the results of different

instances of the engine acting on the same representation are mostly different, then a set of

independent agents working on the same code base would produce largely independent sets of

warnings. This would be ideal for large scale parallelism since the only information shared

among the agents would be the initial representation and the final results; this initial

representation can be either communicated from a central server or generated on the spot

1 Due to bounds on the number and types of paths explored, as well as time out bounds imposed on how long one
part of an exploration can take. These bounds are needed because the unbounded version of the analysis is
unsolvable. The engine also uses heuristics to guide the imposition of some bounds.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

23

depending on the cost of communicating it; the final results would be transmitted to a central

server and collected there.

6.4.2 Relaxing time constraints

A different potential design increases the communications cost slightly, but still allows for large

computational passes between communications. The Smashproof analysis engine creates slices

through the intermediate representation and analyzes the contents of those slices. If different

instances of the engine work on different slices, then that segment of the analysis can be largely

independent. Some communications are needed to coordinate which machine is working on what

slice, but otherwise the communications needs are similar to the independent agents. In a

reasonable amount of user time, this would allow the time out bounds to be relaxed, and the

deeper exploration allowed by the relaxed time out bounds might greatly improve the quality of

the analysis.

6.4.3 Adjusting engine characteristics

Finally, a segment of the testing was devoted to determining which characteristics of the engine

most influence the quality of the results. This information can be used to spark ideas for designs

not already considered.

6.5 Using non-determinism to fuel independent agents

In this study, analyses of 5 different open-source programs
2
 with a total of about ¾ million lines

of code were repeated 20 times each. For each individual program, the total number of unique

warnings generated
3
 was calculated. The order of the 20 runs is arbitrary; new warning fractions

were calculated from a specific ordering by determining what fraction of the total number of

unique warnings were first seen in each analysis run, if the runs are explored in the arbitrary

order assigned to the runs.

In general, the results were consistent in that the first run produced approximately 90% of all

unique warnings, while later runs produced no more than 2-3% additional unique warnings each.

The graph in Figure 1 shows a cumulative view of the results. The ―Fraction of total‖

measurements are the median across the 5 test programs for the fraction of unique warnings

revealed in each analysis run. We could imagine performing these analyses in parallel and

combining the results at the end. Then, a traditional measure for how much benefit is derived

2 The programs are open source packages with wide use and extensive testing: uucp with ~50,000 lines of code
(KLOC), Berkley database with ~94 KLOC, bind with ~142 KLOC, binutils with ~198 KLOC and samba with ~264
KLOC.
3 CodeSonar provides fingerprinting of warnings so the identity of a given warning is the same over multiple runs,
and even when there have been changes in the code base that do not affect the warning. This makes identifying
unique warnings easy.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

24

from the parallelization is the parallel efficiency.
4
 The equivalent parallel efficiency is calculated

using the assumption that the communications costs of sharing the representation and collecting

Figure 1 The fraction of the total unique warnings as a function of the analysis run number for an

arbitrary ordering of the 20 analysis runs.

From this, the parallel efficiency is calculated as a function of cumulative runs up to run N by taking

the total number of unique warnings generated by runs [1, N], divided by N times the number of

unique warnings produced by analysis run 1. This rapidly approaches a 1/N curve, which indicates that

the efficiency is approximately the same as if one analysis run did all the work, and the other runs just

sat idle and did nothing.

the results is close to zero. This is almost certainly an over-optimistic assumption, but even so

the efficiency is quickly well below any acceptable level. With 20 processors, the efficiency is

about 1/20, which is the same as one processor doing all the work and the other 19 sitting idle.

So, the implication of these tests is that an independent agents design making use of non-

determinism in the analyses is not feasible for even small-scale parallelism, and does not

improve as the scale increases.

4 Parallel efficiency is a measure of how much of the available processing power in the parallel array is being used
in the computation. An efficiency of 1 means all of the available processing time, while less than 1 means that
some available processing power is performing no useful work. Generally for small scale parallelism efficiencies
close to 1 are considered good, while for large scale parallelism values above 0.75 are considered good.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 5 10 15 20

Fraction of total

Parallel efficiency bound

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

25

6.6 Using multiple processors to increase available process bounds

The Smashproof analysis engine has a large number of adjustable parameters that control the

details of the exploration of the intermediate representation. Changing the values of these

parameters can have a large effect on the run time performance of the analysis and may also

affect the quality of the results. Two studies were performed to isolate any such effects produced

by parameters that are amenable to parallel treatment.

The parameters adjusted by the first study are a combination of time bounds and search behavior

bounds. The time bounds set limits on how long the analysis can take to complete different

calculations. If a time limit is exceeded, the calculation is marked as not useful and any

information that might have been generated by it is not available for later use in classifying other

program structures. The search behavior bounds include how broad the search will become

before truncating further possibilities, the number of procedure inputs that are checked while

analyzing a given procedure, and the maximum complexity of allowed logical statements.

Checks were run at the baseline level, with all the study parameters doubled, quadrupled, and

multiplied by 8. Run times for these analyses were allowed to extend as needed. The same five

programs were used for this study as for the non-determinism study above.

A data analysis method similar to the one used above was employed to encapsulate the data. That

is, we looked at fractional improvement in the number of unique warnings. However, in this case

we were not looking for only the unique warnings in later runs, since a parallel model based on

this reasoning would not have multiple agents performing the same analysis. We used the

baseline level for the parameters as a standard and looked at fractional improvement compared to

that standard. The results showed a best single trial fractional improvement of just 21%

compared to the baseline when the parameters were moved to 8 times their base value. Worse,

the improvement curve quickly bends to a diminishing returns prediction.

In the chart below, we again plot the fractional improvement in the warning totals of the 5

different program analyses. From this study, there is no reason to think that using large-scale

parallelism to support increases in the parameters like the ones explored will be useful.

It may be that we chose the wrong set of parameters to explore, or that a deeper exploration is

needed to see the benefits. So, a second set of tests with different parameter settings was

attempted.

In the second study, timeouts were extended to infinity, and the bound on search breadth was

varied. A different suite of test programs was used for this study
5
, as well as using the

application binaries instead of the source code.
6

For this work, there was a question of what to measure. Hand checking of binary disassemblies

for errors is not feasible for most real programs, so the study needed a baseline to compare

against. We chose the CodeSonar-C analysis of the source files as the baseline. It is not expected

5 The executables used were gnuchess, irssi, naim, and wu-ftpd
6 Remember that source code and binary analysis use the same underlying analysis engine. The difference between
them is the production of the intermediate representation used in the analysis.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

26

that the analysis results for the source code and the binary will match exactly, but there should be

substantial overlap.
7
 Measuring that overlap coherently is one data analysis challenge.

Figure 2 Fractional improvement in the number of unique warnings generated by increasing the

bounds on a collection of analysis parameter in CodeSonar. (See the text for the applicable

parameters) The bounds were increased to twice, four times, and eight times the current default

values and the same code base was re-evaluated. The fractional increase in the number of unique

warnings generated is not large, and if the trend established in this study continues for higher values,

then it has already reached the point of diminishing returns

Think of the warnings generated as a classical Venn diagram (Figure 3). There are the sets of the

warnings generated by CodeSonar-C and those generated by CodeSonar-SWYX. The two sets

have some non-trivial overlap.
8
 We will call the overlapping section the matching warnings, and

measure what fraction that overlap is of the total warnings produced by CS-C. The CS-SWYX

warnings that are not part of the matching warnings will be called non-matching warnings, and

we will measure what fraction the non-matching warnings are of all of the CS-SWYX warnings.

7 The IR for the source code is in some ways richer than that for the binary, since it includes information about
types and code structure that isn’t present in the binary. However, the binary is also superior in some ways, since it
is what is actually executed after all of the transformations performed in the compiler and elsewhere. This is an
example of the What You See Is Not What You eXecute (WYSINWYX) syndrome. Thus, the name of the
GrammaTech tool for analyzing the binary is See What You eXecute (SWYX).
8 If CS-SWYX has access to the source code, it can find warnings by analyzing the binary and then report the lines in
the source code that produce the flaws in the binary. These can be compared for both location and warning class
to warnings produced by CS-C to find warnings produced by both.

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5 6 7 8 9

In
cr

e
as

e
 in

 w
ar

n
in

gs
 a

s
fr

ac
ti

o
n

 o
f

sc
al

e
 =

 1
 v

al
u

e

Scale of parameters

Fractional change in warning count

uucp

bdb

bind

binutils

samba

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

27

For each executable, tests were performed at different settings for the search breadth bound. The

values used were the baseline value and 2, 4, 8, and 16 times the baseline. Included in this study

was a repetition of the measurements at the baseline and 8 times the baseline to estimate how

much of the variation in results was due to non-determinism instead of changes in parameters. As

was done above, the results are presented for each of the different test programs for each case.

The match and non-match changes are measured in percent of total. Additionally, the run times

for the trials in the suite were measured, and again the median change in run time is reported –

measured in minutes (cf. Figure 4).

These results show that although there may be a substantial run time cost for the adjustment of

the parameters, there is no consistent improvement in the quality of the results.

Taken together, the two studies of this section indicate that the combinations of parameters

explored do not provide a basis for a viable large-scale parallel architecture.

Figure 3 A schematic representation of the overlap between warnings produced by source code

analysis, and warnings produced by binary executable analysis. Note that the source code analysis has

access to information about variable type, code structure and other things that are not available in

the binary executable (because the compiler does not place that information in the binary). Similarly,

the compile performs many transformations that are not available in an analysis of the source code.

CS-C
CS-

SWYX

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

28

Figure 4 Improvement in the fraction of the generated warnings from binary analysis that match those

generated by source code analysis as a function of the increase in the affected parameters. The

dependent axis shows the fraction as a percent of the initial value. Multiple values are reported for an

increase of eight times because two different runs were performed at that value to estimate the

effect of non-determinism on these results. Note that the non-determinism effects are of the same

scale as the increased parameter effects.

0

2

4

6

8

10

12

14

0 5 10 15 20

P
e

rc
e

n
t

im
p

ro
ve

m
e

n
t

Scale for parameters

Improvement in match

gnuchess

irssi

naim

wu-ftpd

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

29

Figure 5 Improvement in the fraction of warnings generated only by the binary analysis as a function

of the increase in the parameters describing the algorithm. As before, the dependent axis shows the

improvement as a percent of the original value.

Figure 6 Increase in the execution time as a function of parameter values. This is not a conclusive set

of data, since the variation based on non-determinism is similar in scale to the increase as the

parameters increase. However, a trend toward increasing time is consistent with this graph.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20

P
e

rc
e

n
t

im
p

ro
ve

m
e

n
t

Scale for parameters

Improvement in non-match

gnuchess

irssi

naim

wu-ftpd

0

20

40

60

80

100

120

0 5 10 15 20

C
h

an
ge

 in
 s

e
co

n
d

s

Scale for parameters

Change in analysis time

gnuchess

irssi

naim

wu-ftpd

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

30

6.7 Exploring parameters for possible combinations that strongly affect result

quality

One further study was performed on the parameters that describe the details of the exploration

performed in the analysis. The Smashproof engine uses dozens of such parameters internally, so

the curse of dimensionality implies that there is no practical way to explore the whole space in

detail. Instead combinations were selected based on expert understanding of the parameters‘

actions in the analysis. This is an imperfect selection method, since in a complex analysis it is

usually true that intuitive perceptions of relative influence of different factors in the analysis are

unreliable. However, aside from a very extensive and expensive exploration, this approach

provides some useful information about a very hard problem.

Understanding the meanings of all the parameters selected would require a detailed exposition of

the analysis algorithms used inside the Smashproof engine. However, the lesson learned from

this study is simple enough.

The parameters that had the most effect on result quality were all related to how information

about the structure of the program on the large scale was shared throughout the analysis. So, the

analysis of function A improved when it learned more about what was going on in function B

that was physically separate in the code but interacted with A in some slices through the code.

In terms of parallel and distributed programming, this means that the results improve when the

communication of partial results between different processes increases. However, increasing

communications between processes in a parallel or distributed computation is very expensive,

and so cannot be done on large scales.

6.8 Conclusions from this study

The result of this study is a fairly strong conclusion that the CodeSonar static analysis engine as

currently constructed is not amenable to large scale parallelism, and in fact, that the current

parameter settings are reasonably well tuned for the current design. Incremental performance

gains may be possible with a finer grained approach to parallelism applied to a multiprocessor or

multicore single box architecture, but qualitative improvements in capabilities based on grid or

volunteer computing designs are not feasible. Any such approach, if possible at all, would

require a broad rearchitecting of the engine and could not be performed inside the scope of this

project.

This does not imply that improvements in CodeSonar are not possible, merely that brute force

(more processing power) extensions to the current design provide little gain. Instead,

improvement efforts should address the basic logical representation of the program and the way

in which conclusions about warnings are drawn. No experiments that changed the logical

encoding were performed here. Those representations and reasoning methods currently include

soundness and completeness approximations that enable good performance in reasonable time.

Future improvement efforts will focus on this area, rather than parameter tuning of the existing

design.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

31

7 Distributed concolic execution

The second technology that we chose to assess in this project is concolic execution.

GrammaTech has an existing concolic engine (called GraCE) that we used for this purpose. An

introduction to concolic execution of subject programs is provided in section 7.1.

Our assessment indicated that concolic execution is very amenable to parallel execution.

Consequently we chose that technology for in-depth analysis. We investigated the following

questions:

 What parallel designs might be used for GraCE? Which are the preferred ones? From this

study we chose three to implement.

For those three designs we measured the parallel speed-up as a function of various design

parameters:

 How much additional work is performed (and how much time is wasted by

communication needs)?

 How much useful (non-redundant) work is a performed when multiple processors are

used without coordination?

 What is the communication overhead and how might it scale to larger systems?

 Is there an improvement in the quality of program coverage generated by concolic testing

when multiple, parallel processing engines are used?

As part of answering these questions we also needed to improve GraCE‘s robustness (section 9),

implemented a validation mechanism for its underlying semantics (section 10), and implemented

a test and performance measurement infrastructure (section 8).

7.1 Description of concolic execution

This subsection provides background information. It describes the technique of concolic

execution and its relationship to other static and dynamic analysis techniques.

7.1.1 Distributed Dynamic and Hybrid Analyses

One of the more effective techniques for discovering software vulnerabilities is based on a

dynamic technique called fuzzing. Traditional fuzzing works by feeding a program random

inputs and observing what breaks [66]. Newer incarnations are more sophisticated. Random

inputs may be constrained to ensure that they are at least well formed [66]. Non-obvious or non-

traditional inputs may be fuzzed, e.g., by modeling periodic disk failures [4].

The success of fuzzing in finding vulnerabilities suggests that it could also be used for finding

malicious backdoors or time bombs. By leveraging the spare cycles of a large community,

fuzzing could become much more effective. However, it is also easy to construct a malicious

payload that has an exponentially small chance of being discovered by purely random fuzzing.

Recently, new techniques were introduced that improve upon fuzzing by adjusting the input

based on a combination of static analysis and observed behavior. Because these techniques guide

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

32

fuzzing based on analysis of the code, they are harder to evade and therefore better for eliciting

potentially malicious behavior. However, they also can benefit from increased computational

resources. In Section 7.1.2 we describe concolic execution, also known as ―smart fuzzing.‖ In

Section 7.1.3 we describe the DASH algorithm, an approach to ―verification by testing,‖ that is

loosely related to concolic execution and fuzzing, but more goal-oriented.

7.1.2 Test-Case Generation by Concolic Execution

Concolic execution combines concrete execution (used in dynamic analysis) with symbolic

execution (used in static analysis) [72]. It has also been described as directed automated random

testing [47] and whitebox fuzzing [48]. The technique starts by generating a random input for the

program (or module) under test. The concrete (actual) execution of the program on the random

input is observed. As the concrete execution proceeds, a set of symbolic constraints is recorded

that summarizes what must be true for the execution to proceed along the observed path.

At the end of the execution, any solution to the constraints should provide a (usually different)

input that would cause the program to follow the same path, execute the same sequence of

instructions, and decide all branches in the same way. By modifying the constraints before they

are solved, it is possible to get an input that follows a similar, but slightly different path.

Specifically, it is possible to generate a (test input leading to a) path that deviates from the

original observed path as follows: truncate all of the constraints for points following a branch

point, and negate the constraint associated with the branch point. This approach is used to

―expand‖ the initial random input that covers a single execution path into a test suite with

extensive path coverage. (The fact that concolic execution achieves high path coverage is

important, as shown in Figure 7.)

Figure 7 Only one input (foo(true,false)) elicits the division by zero at F. Complete code coverage

(i.e., A, B, C, D, E, and F are all tested) and complete branch coverage (i.e., BC, BD, DE,

and DF are all tested) can be obtained (e.g., with foo(false, false) and foo(true, true)) without

eliciting the error. Concolic execution achieves complete path coverage — all paths through the

code are covered — by generating all four possible inputs.

We demonstrate concolic execution on a trivial C++ function:

bool bounds_check(unsigned int x) {

 x = x + 100; // (1)

 if(x < 1000) // (2)

 return true; // (3)

int foo(bool b, bool c) {

 int x = 5; // A

 if(b) // B

 x = x – 5; // C

 if(c) // D

 x = x + 10; // E

 return 10/x; // F

}

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

33

 return false; // (4)

}

Let execution begin on a random input x=201,056. The execution begins at statement (1) in the

concrete (actual) state x=201,056, and the symbolic state is true (i.e., unconstrained). After

statement (1), the concrete state is x=201,156, and the symbolic state is described by a single

constraint x1 = xin+100. Concrete execution proceeds to (2), which evaluates to false, causing

execution to proceed to (4). The concrete state remains unchanged during these transitions, but

the symbolic state is updated by conjoining another constraint indicating the decision of the

branch at (2). This yields the following constraints for describing the symbolic state at (4):

 x1 = xin+100 x1 ≥ 1000

At this point, the execution ends. Note that any solution to the symbolic constraints that describe

the symbolic state, also known as path constraints, would cause execution to follow the same

path, and that the initial random input is one solution to the path constraints. Concolic execution

proceeds to search for an input that will cause a different choice at the last (and in this case only)

branch. The constraint from this branch is negated, giving the constraints:

x1 = xin+100 x1 1000

A random solution (say xin=750) is chosen, and a new round of concolic execution is performed.

For this example, two rounds are sufficient to achieve complete path coverage, and the process

terminates. Note that fuzzing has a very low probability (1000/2
32

 < 3x10
-7

) of generating an

input that exercises line (3).

One technical detail for performing concolic execution is how to represent and solve the path

constraints. On one hand, the constraints must be easy to solve; on the other, they must be

expressive enough to capture the program‘s behavior. In many cases, the path constraints are

based on linear (or affine) relations, such as:

3

221

1

k

kvk
v

where ki are constants, vi are variables, and ● represents one of the relational operators =, ≠, ≤,

and ≥. [47] and [72] both present algorithms for representing and solving path constraints based

(in part) on linear relations.

In the event that the constraint language (e.g., affine relations) is not expressive enough to

represent the program semantics (e.g., due to a non-affine computation), concolic execution

―borrows‖ from the concrete state in order to simplify the constraints [47]. This may cause the

concolic engine to miss some execution paths that are possible (because it over-tightens the

symbolic constraints to the specific concrete execution it has witnessed). However, it will always

be able to make forward progress and does not get stuck with expensive (or even undecidable)

analysis problems. In effect, concolic execution uses the different strengths of dynamic and static

analysis to offset the weaknesses of the other.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

34

Concolic execution was the primary focus of this research effort. One approach to identifying

malicious behavior is to try to elicit the behavior in a sandboxed environment where it can be

observed. Concolic execution is a superb tool for this purpose because it provides such high

coverage of the code. (It also provides some control over how ―coverage‖ is defined; it can be as

simple as instruction coverage, or as complex as can be specified in the constraint language of

the solver.) However, the execution space of real-world programs is often extremely large — too

large to ever be completely covered (for many useful definitions of coverage), even by concolic

execution. This means that the effectiveness of this use of concolic execution is in direct

proportion to the amount of computational power we allocate to it. We believe that by using

computational communities and concolic execution, we will greatly enhance our ability to

expose malicious behavior (as well as to identify unintentional program flaws).

7.1.3 The DASH Algorithm

The DASH algorithm could be thought of as goal-directed concolic execution, although the

algorithms share only a single step [20]. During each round, the algorithm first looks for a path

in the abstract program representation that leads to an error state (or a security violation). It then

attempts to grow (in a concolic-like fashion) from one of the concrete executions it has

previously observed towards the abstract error path it has found. This has one of two results:

1. the solver produces a new test that has an execution path that is at least one step closer to

the abstract error path; or,

2. the constraint solver fails to find a suitable input for the desired path.

In the latter case, DASH refines its abstract program representation based on analysis of the

failure in the hope of eliminating infeasible paths from the abstraction.

The entire algorithm iterates in this fashion until one of three results is reached:

1. An input is discovered that triggers one of the errors that DASH was searching for.

2. Abstraction refinement results in an abstract program with no error paths. In this case, the

abstract program serves as proof that the program is error-free.

3. The algorithm times out. In this case, the algorithm will still produce a test suite with

good coverage of the subject program.

As with concolic execution, we are interested in using DASH to flush out malicious behavior.

Compared to concolic execution, DASH may be able to employ more sophisticated coverage

metrics (for flushing out backdoors). It might also be used to look for specific malicious behavior

(e.g., opening unauthorized ports).

The DASH algorithm is easily adopted for distributed computation, in several ways. One

approach is to assign each community member a different goal (e.g., coverage criterion or

malicious behavior) and ask them to run the DASH algorithm (unmodified) for that goal.

Another approach is to assign community members different strategies for generating the (partly

random) test inputs that are used to refine the abstract model. One input-generation strategy may

cause DASH to get stuck in an endless refinement loop while another strategy may lead to a

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

35

different refinement-loop trap, or none. It may be useful for a central controller to coordinate the

best results from all of the parallel algorithms. For the Safety in Numbers project we did not have

time to implement parallel versions of DASH – we confined our work to GraCE.

7.2 Possible architectures for a parallel GraCE

The basic work-flow of GraCE is simple: given an input, analyze the path taken by an execution

using that input, and determine alternate inputs that execute along other program paths. This is

conceptually very parallelizable: each input can be analyzed independently, producing new

inputs to be subsequently analyzed. The only danger is that separately generated inputs will

exercise the same program path and produce other duplicative inputs. That concern is discussed

below.

There are several methods to parallelize the existing serial concolic engine; we identified seven

large-scale architectures, eight variants on those architectures, and a combinatorial explosion of

mixtures of ideas from two or more. In this process, we have identified costs and benefits

associated with many of them. However, it is not practical to explore all of them in depth.

Instead, we are identified a smaller subset that appear promising on the surface and developed

tests that could be implemented and analyzed with reasonable effort; this activity provided more

dependable evidence on which choose the prototypes to create. In each instance, an architectural

method was identified as promising and tests were designed to explore the central questions

regarding the utility of that method. The tests were developed and performed before deciding to

build a prototype; only if the results were favorable did we implement that design.

The architectures and variants we considered are enumerated below.

7.2.1 Central work queue of input tasks

In a typical implementation of a concolic testing engine a set of program inputs is used to drive a

concrete execution. The trace from that execution is analyzed, and logical statements are

generated that describe the conditions that lead to branches that have not yet been executed.

These logical statements are solved to produce one or more sets of program inputs that will

explore these other execution paths. The input sets are placed in a (possibly prioritized) work

queue and retrieved to drive later concrete executions.

One obvious parallel architecture is to build a master process that holds a common queue of

inputs that is used by many different analysis engines. When an engine needs an input instance, it

draws from the top of the queue. When the engine generates new input sets, they are inserted into

the queue.

This is a fairly coarse-grain parallel architecture and is only useful if the queue population can

support the supply of worker engines throughout much of the analysis. A useful test is to log the

size of the queue throughout the analysis as various programs are executed.

The effectiveness of this technique will also depend on how compact the input sets are. If the

input sets are too large, then communication overhead may become prohibitive. This has the

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

36

potential to lead to contention between engines when communicating with the centralized work

queue. Careful design of the communication protocols and use of distributed queues would

ameliorate these problems.

7.2.2 Central queues of tracing, resolution, and input tasks

A finer-grained parallelization leverages the fact that the workloads can be refined into steps to

generate traces, to analyze traces, and to resolve the logical statements to generate new sets of

inputs for later concrete executions. In this design, a master process holds queues for tasks of all

three kinds, and worker counts of the three sorts are balanced such that the number of tasks in

each of the queues is approximately constant during the analysis.

This requires substantially more redesign and code change than the previous model, but offers

potential load-balancing benefits. It also has more communication overhead than the previous

model; there is the potential problem that this communication will include very large packages of

data to be sent from one worker process to another because the package of trace and logical

statement data from an execution is sometimes large.

Measurements of interest include the distribution of communication package size and the relative

imbalance of process time spent in the different phases of the analysis. The code was not

instrumented to measure these.

7.2.3 Randomized independent agents

It is possible to perform the analysis with no runtime communication at all. Instead, a collection

of concolic engines perform independent analyses; after they have reached some boundary the

analyses stop and the results from the separate runs are composed together into a single unified

result set. This is the simplest to program, since almost no changes are needed to the existing

engine at all. There is a need for a script that starts the processes, and for a random seed

argument that is used to start each engine in a different state. At the end, a procedure is needed to

combine the results from all engines into a single set of results without duplicates.

We need to determine whether such a method is acceptably efficient in exploring the space of

possibilities and how much duplication of work happens because there is no coordination among

engines. Tests were designed to estimate this effect and the results are presented in section 7.5.

7.2.3.1 Variant 1

In this design variant, the concolic engine is modified so the primary exploration uses a random

choice of inputs (―fuzzing‖), but the fuzzing is monitored to determine when it is mostly

exploring already-explored program paths. In such cases, concolic execution is applied to a

fuzzed set of inputs to break out of the over-explored set.

This is a variation on typical fuzz testing and concolic execution suggested by Majumdar and

Sen as ―Hybrid Concolic Testing‖ [92]. It would require some modifications and the addition of

the monitoring process to determine when concolic evaluation is needed. However, it is likely to

avoid efficiency issues that are a concern otherwise.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

37

7.2.3.2 Variant 2

It is not required that the distribution of random input be uniform. Another possibility is to use

biased distributions for the different engines, where each engine is biased to prefer some subset

of the possible inputs. A good choice of biasing makes it less likely that different engines will

reproduce the same testing work. However, making such a choice implies substantial knowledge

of the application being tested, and poor choices can lead to reduced coverage of the application

possibilities.

7.2.3.3 Variant 3

The current design of the engine starts from a trace of a concrete execution, generates conditions

that flip all the branch choices taken during the execution; it then tries to solve those conditions

to find inputs that explore different branches. Instead of working with all of the branches, it

could use some random subset of the branches in the first concrete execution.

This is a relatively simple modification of the code and is easy to explore once a prototype using

randomized independent agents exists.

7.2.4 Divided input space

If there exists some set of different input conditions that is read by almost all runs of the

program, and that input can be identified, then the set of all possibilities for that input can be

divided among the different processors: each processor would act on a subset of the possible

values for that input and would ignore results that would require using other parts of the set.

This method implies some understanding of the possible inputs to the program being tested, and

may not be practical for that reason. It also runs a risk that although an input is required for the

program, that value of that input could have little or no effect on the execution path. For

example, a program that processes communications might require a port number that it uses to

make a connection with a remote server. Every 16-bit integer value might be valid as a port

number, but changing which value is used for the port does little or nothing to change the

behavior of most of the program. An additional issue is that since only some parts of the range

might be valid input, any processing nodes that have only invalid possibilities in their range

would operate inefficiently. Attempts to mitigate this problem with load balancing and work

stealing algorithms greatly increase complexity.

It is difficult to create a useful test protocol for this method. It depends very strongly on the

properties of the program under analysis, so any testing structure tells you more about the

choices made to develop the tests than about the method. The lack of such a testing method

makes this design less appealing than many of the others in this list.

7.2.4.1 Variant 1

With a deeper understanding of the program under test we could make sure that any required

input was actually important. However, this again increases the human intervention needed in the

testing process to specify what inputs and ranges are the important ones.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

38

7.2.5 Divided execution path space

As seen above, there are several potential problems with dividing the space of inputs among

different concolic engines. So, instead of worrying about which inputs are needed, we could

divide the space of execution paths.

This technique assigns a number to each processor and uses that number to choose the branch

taken at the first few branch points encountered in the code. This is the starting place for the

different explorations. For example, if the number of processors is 2
N
, the N bits of the binary

representation for each processor‘s id can indicate the true/false choice to make at each of the

first N branch points. In this way the processes can be tied to the input needed to determine those

branches and only explore variations that affect later branches.

The main issue for this design is that there is no reason to think the first few branches in a

program encapsulate important differences in the execution. For example, if the program takes

command line input and validates that input, the first few branch points may all lie in the

argument validation, so many of the choices lead to validation failure and no further exploration,

while only a small fraction explore the majority of the program.

With non-trivial but still small programs it is possible to estimate the effects of the first N

branches. This would include a consideration of the likelihood that some of these paths are

already consigned to dead ends given the first N choices.

7.2.5.1 Variant 1

Instead of pinning the decisions at the first few branches, fix them at some set of branches

randomly chosen from the list of possibilities. This avoids the issue with validation or

initialization code.

7.2.5.2 Variant 2

Instead of numbering branches by the order they are encountered in a trace, generate a

numbering assignment for all of the branches in the code. Traces that do not hit branches for

which they have assigned decisions just ignore that decision value.

Producing such a numbering may itself take some meaningful analysis, however.

7.2.5.3 Variant 3

Instead of using a binary representation of the number of processors, select some larger number,

preferably a power of 2, and at least an order of magnitude larger than the number of processors.

Keep these numbers in a central queue such that a concolic engine with no other work to do

requests a number from the queue and uses that number to divide the execution path space.

This reduces the impact of a single process receiving a set of branch selections that are a dead

end. Such a process finishes its current exploration quickly, and then moves on to a different

exploration based on a new number from the queue. Using a power of 2 ensures a simple

mapping to branch options; having at least an order of magnitude more items in the queue than

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

39

processes will usually give a reasonable load balance without the need for complex load

balancing code.

7.2.6 Goal driven concolic execution

Current concolic engines are exploration driven. The algorithm is simply trying to find inputs

that lead to new execution paths, trace those paths, and process the information in the trace to

find more new paths; each path is assessed for errors or presence of malicious intent. Another

possibility is to drive the exploration with some set of goals. This could be built on the DASH

algorithm [20]. Providing different engines with different goal sets would lead to different

explorations of the possibilities. A well-designed set of goals would also lead to a more efficient

exploration of potentially problematic code segments.

Currently DASH and a related algorithm from Thakur et al. [93] that applies the same ideas to

machine code, called McVETO, are themselves research projects. We estimate that substantial

work on the underlying processes would be needed before this technique could be incorporated

into a concolic prototype. So, at this time it is not a good choice for a prototype system.

There are no meaningful tests of this process that can be done using small modifications of the

current engine, since the algorithm used is substantially different and would require construction

of a whole new engine.

7.2.7 Seeded with regression tests

If we assume that regression tests for an application are available and that they are written with

the intention of exercising important sections of the code, then another useful method may be to

start concolic execution runs from regression test inputs instead of from random inputs.

These starting places probably ensure that different engines start exploring different parts of the

code, and that the starting places include important parts of the code. However, it also builds the

assumptions of the original developers into the testing process and may be very inefficient at

finding bugs that are different from those assumptions.

Moreover, it requires access to regression tests. This is a reasonable assumption for a developer

working on the code, but not for third parties who wish to extensively test received code before

trusting it. In particular, malware developers have no history of shipping regression tests with

their products.

A small modification to the existing engine would allow for initial inputs to the program under

analysis to be provided by a user instead of being randomly generated. Combining this

modification with a few regression test inputs and comparing coverage and efficiency to tests

generated by random inputs would be a reasonable test of the viability of this method.

7.2.7.1 Variant

To combat the problem of tying testing to the developers‘ assumptions, we could use regression

test inputs as a base for randomization. This might include replacement of parts of the input with

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

40

random data, or random mixtures of several different inputs. Of course, this does nothing to

address situations that have no tests.

7.2.8 Fine grained parallelization of the engine

Not all parallel architectures are coarse-grained. It is also possible to parallelize individual loops,

functions or algorithms. Such designs are most useful when a small number of well-contained

segments of the program are responsible for most of the run time and are amenable to

parallelization.

This is the most intrusive design in terms of the modifications needed to the serial code. It is also

the most difficult to test and load balance. In distributed or grid code, it is even worse, since such

a design requires distributing components of the underlying algorithms over many machines and

combining the results of the computations with synchronization before moving on. Thus there is

a strong potential for high communication and synchronization overhead.

As such, this architecture was not considered for this project.

7.2.9 Combinations

Finally, combined methods that use parts of the previously defined architectures cooperatively

are reasonable in many cases. Such combinations come at a cost of additional complexity, and it

can be difficult to develop tests for viability for many of them. Furthermore, part of our goal is to

clearly assess the merits of individual designs. Thus we will combine different approaches only

when the various architectures clearly complement each other. Thus combination architectures

are a lower, or at minimum, later, priority for these explorations.

7.3 Selection of designs to prototype

The extensive taxonomy of possible architectures was too large to investigate in this project; the

list had to be trimmed to a set of prototype candidates. The criteria for choosing parallel designs

include the promise of exploring interesting design spaces, potential for massive parallel

implementation, and relative testability of the implementation for correctness and stability.

Based on those considerations, three designs were selected:

 random initial inputs to a set of independent concolic engines. This design allows

additional processors to be added easily, but the independently running engines may

duplicate a lot of work.

 crafted inputs to independent engines. This design also allows processors to be added

easily, but by using white-box-chosen inputs, we expect to obtain higher coverage and

may avoid some duplicated work.

 a shared single work queue. In this design a single boss process distributes work among a

number of worker processes, who report results as they are completed. No work is

duplicated in this design, but the communication overhead will be higher and will need to

be measured to determine scalability.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

41

A more detailed description of each is provided below.

7.3.1 Independent engines with random initial inputs

Traditional fuzz testing uses random inputs to test an application. Our first design parallelizes

that approach by using randomized initial inputs for many independent copies of the concolic

engine. This is a straightforward implementation, and it keeps the work performed by the

different engines independent. There is a small communications burden at the start of the

analysis when the randomly generated inputs are assigned to the different engines, and there is a

communication at the end when the results of the exploration are collected for final reporting.

However, in between, the calculation is fully independent and no communications between

processes is required.

This is ideal for massive parallelism, since frequent communications impose a need for

synchronization and are error prone even in small scale parallelism. In addition, communications

are typically slow compared to computation; so, as the number of processes in the cluster

increases, the fraction of the run time used for communications increases. Thus, programs that

require frequent communications have an upper bound on potential performance gain from

adding more processors.

Figure 8 Schematic representation of the architecture of the independent agents with random seeding

design

The random independent engines design avoids both of those pitfalls, and makes use of an idea

that is known to be useful in some contexts. Randomization of inputs has been used in traditional

fuzzing analysis with meaningful success in some cases. In this design, we combine fuzzed

initial inputs with concolic exploration of possibilities generated by those inputs in what may be

a best of both worlds approach.

However, there are possible problems.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

42

In the current implementation, the random input generation assumes nothing about the structure

of the inputs that should be given to the subject application. If the subject includes extensive

input validation, almost all of the random inputs will fail the validation; they will then begin their

concolic exploration from approximately the same trace. In other words, many of the

independent engines will explore the same traces and the exploration will be very inefficient.

Only the inputs that happen to proceed beyond the validation phase will explore novel execution

paths.

7.3.2 Independent engines with crafted initial inputs

One way to solve the problem of collapsing trace exploration is to provide inputs that are known

to explore different parts of the trace space. The crafted inputs prototype does just this. Instead of

beginning from random inputs, this engine has a database of inputs that are known to exercise

different parts of the code. So, engines that start based on these different inputs will be sure to

begin exploration from different traces. These different traces produce different concolic

explorations of the set of all possible traces, and so the problem of collapsing traces is at least

partially avoided.

Figure 9 Schematic representation of the architecture of the independent agents with crafted initial

inputs design

The initial inputs can be generated directly, but they are easiest to produce when working with a

code base that already has a strong testing suite. In such a case, the test suite is built using the

developers‘ understanding of the error prone and important sections in the code. Using those

inputs to fill the database of initial inputs then builds the developers‘ understanding of the code

into the testing system. This has both positive and negative implications, however. If the

developers understanding of a problematic piece of code is lacking, the test suite probably also

does little to explore that code. In fact, since the initially generated traces are the ones from

existing tests, the starting places for concolic exploration are likely to be some of the most stable

and bug free traces in the code.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

43

This method also is not very useful for third party users of the subject program or for detecting

malware injected into otherwise useful code, since it is unlikely there is access to a test suite for

either case.

7.3.3 Multiple engines with a shared work queue

A different way to address the collapse of the trace exploration is to assure that multiple engines

only redo work if you want them to. This can be accomplished by a central, shared queue. The

queue holds the initial inputs needed for continuing exploration of the set of all traces through

the subject program. It includes a database so inputs that have already been explored can be

suppressed and the exploration can focus on inputs that haven‘t been tried before.

Figure 10 Schematic representation of the architecture of the shared work queue design

This has some side benefits: the database can decide to explore the same inputs a few times, if

desired. Re-examining an input protects the integrity of the results in circumstances where not all

of the computers in the cluster or grid can be trusted without question. This may be due to

hardware issues or to an intentional undermining of the analysis, but several standard ways to

guard against it are possible with the centralized queue.

The problem in this design is the need for frequent communications between Boss and Worker.

As explained above, this can become a limiting factor in the ability to scale to arbitrarily large

clusters. However, hierarchical arrangements of local Bosses and other design changes can

mitigate this problem if needed. As is typical, they trade decreased communications overhead for

increased computational complexity, but the trade may be justified. Furthermore, for large

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

44

programs, the work performed will be dominated by running and analyzing the subject program;

communications costs will be relatively smaller as the subject program complexity increases.

7.4 Implementation work

We completed the implementation of all three designs within this project and measured the

performance differences among the designs. As we applied the tool to larger and larger

programs, additional issues with the overall framework became apparent. Some are problems

with the GraCE tool itself; these were addressed and are discussed in sections 8-10.

7.5 Assessment of performance results

Extensive collection of data from our parallel prototypes was an important feature of the project.

The results reported in this section represent thousands of hours of computer time and are

condensed from several gigabytes of collected data. However, it is important to understand that

the space explored in parallel performance studies is large and has high dimensionality, so a

complete exploration is simply not feasible except for the simplest examples. There are four

characteristics that we measured:

 The speed-up in the amount of work performed as a function of the number of processors,

the parallel prototype design, and the type of program being analyzed. Note that in our

current shared-queue design, one processor out of the N total is devoted to managing the

shared queue. Hence we would hope for a speed-up of at most (N-1)/N. However, that

master process actually is quite under-utilized when the program inputs are small. For

groups of processors of the scale we have measured (up to 20), it would be better in some

cases to have that processor perform both queue management and analysis work. One of

our goals is to estimate at what scales the queue controller process becomes overworked.

 The increase in the amount of unique work performed as a function of the number of

processors, the parallel prototype design, and the type of program being analyzed.

 The amount of branch and statement coverage of the subject programs that GraCE

achieves. Branch and statement coverage is a classical measure of test case quality.

Concolic execution enables exploring a large number of unique execution paths. This in

principle creates a higher-quality test suite than just relying on branch and statement

coverage. However there may be an unbounded number of paths and a concolic engine

will only explore a subset of them, limited by time and memory resources. It is possible

that the concolic search engine will focus on a subset of paths that do not, taken together,

have good branch and statement coverage. Hence we measure this coverage as a check on

the concolic engine‘s performance.

 The amount of communication overhead that the parallel designs incur. This is an

important measure in any attempt to estimate scaling behaviors.

Our conclusions are the following:

 Communication overhead in our examples is generally measurable but quite small and

not at all an impediment to performance. Only by explicitly crafting a program could we

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

45

obtain significant communication overhead. Three characteristics of our program set may

overly minimize this problem.

o GraCE is currently not very efficient at analysis. Improving GraCE‘s performance

will raise the proportion of communication in the overall time. However, the

native execution time of the subject program will always be a limit. Hence for

programs that are large enough to be of realistic interest, we still would not expect

large communication overhead.

o We currently only communicate a specific command-line for each new worker

process iteration. When file and network inputs are implemented we will also

need to communicate the data that constitutes these inputs. This will enlarge the

amount of data needing to be communicated.

o The shared-queue controller can always be swamped by a large enough worker

set. That size appears to be at least a few thousand workers in the worst case and

much larger for typical cases. If that ever becomes a problem a tree structure of

controllers can be used.

 Though it varies by program type, the speed-up achieved by using N processors is

typically at least 75% of N and approaches N for larger programs for any of the three

designs. However, the speed-up is measured more appropriately as the amount of unique

work accomplished. For the random-input prototype, this can be quite low, except for

programs with a wide fan-out of execution paths and little input validation; the crafted-

input design does better, but requires a good understanding of the subject program, which

is non-trivial for complex programs. All the work performed by the shared-queue design

is unique.

 The principal limitations of these measurements are these two:

o we have only made measurements up to 20 processors (though for random-input

and crafted-input designs, we can accurately simulate any number of processors);

o the communication overhead will increase as different input mechanisms are

implemented in GraCE. For example, when file input is tested, the system must

send candidate files (instead of just the command-line) to the worker process.

In doing this study we used a range of programs, as described in the following subsections.

7.5.1 Small, “toy” programs created just for this purpose.

These programs generally have simple code, with just 100-200 lines in size, and compiled sizes

of a few KB. The analysis time is dominated (70-90%) by running the subject program, since the

path analysis is simple and straightforward. In some cases, the number of paths in the program is

small enough that all of the paths can be explored. These programs include the following:

o Cmd_args.005: an ―Easter Egg‖ program that has a sequence of branches that are very

unlikely to be chosen at random; the particular Easter Egg output is only triggered by a very

specific input. GraCE finds the unusual path without difficulty. There are about 1300 paths in

all possible executions and GraCE can explore them all.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

46

 Most of the time is spent communicating between GraCE and the subject program

(~80%)

 We measure a ~15 times speed up for 20 processors using shared queue; this gives a

parallel efficiency of ~75% for the shared queue prototype

 The program has periods where the shared queue is filling at the start and emptying at

the end where most of the processors have no useful work to do (this is the principal

effect degrading the speed-up).

 With the random initial inputs prototype, there is no observed speedup for complete

exploration of the paths. In fact, even for partial exploration of the paths the speedup

is small or non-existent. This is because only rarely does a random initial input

explore beyond the first couple of branches in the initial input validation. The

explorations for the different nodes quickly collapse down to being multiple copies of

the same exploration. The only way to assure full path coverage is to let all the nodes

run through to full coverage independently, which means every node is doing all the

work of developing full coverage.

 The unique work efficiency for the random initial inputs prototype is then

(1/N)*100%, where N is the number of nodes. This is equal to the theoretic worst

case.

 For the crafted initial inputs prototype, the initial partial exploration can be very

efficient. A well chosen set of initial inputs provides >85% branch and statement

coverage in one iteration of each node in the cluster. However, the analysis of the first

instantiation of the subject program produces some common results. This reduces the

unique work efficiency as the number of instantiations of the subject gets larger. The

only way for the prototype to assure 100% path coverage is to let every node run the

complete analysis from the different starting places. (This is because the nodes do not

communicate with each other, and so cannot compare notes to see if a different node

has checked the path produced by a given input. Without this ability, the only

available stopping condition that assures full coverage is to allow each node to attain

full coverage independently.) This again leads to the theoretic worst case efficiency.

 The branch, statement, and path coverage are all 100% for all the prototypes

 Additional studies were done with the shared queue prototype to produce an estimate

of the influence of uncontrolled factors on the speedup measurements. A cluster of 16

machines was run several times to perform the complete analysis, and timings were

compared. The results showed a range of parallel speedups from a low of 8.4 to a

high of 13.1. Since there is no duplication of work for the shared queue, that is the

same as efficiencies from 52.5% to 81.9%; this variation can be ascribed to a

collection of factors.

 The machines used for the performance study are not exclusively dedicated to

that use. Other computing jobs take resources and slow down the

computation.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

47

 The machines used are connected via the facility‘s internal Ethernet network.

The entire facility is in the same subnet, so traffic anywhere in the facility will

reduce available bandwidth for cluster communications.

 Such variation would be substantially reduced in a dedicated cluster setting. Also, a

cluster designed for HPC would not use Ethernet with a single subnet, but would use

a high performance interconnect such as Infiniband with a collection of switches and

hubs that minimized the chance of messages from one node colliding with those from

another.

o Misc.002: a program that is meant to have very simple computation and so emphasizes the

communication overhead. It validates the form of the input, then manipulates the bits

slightly.

 It takes quite a few iterations at the start of the run to build up a decent queue size, so

workers spend time idling at the beginning

 The boss does not block on the queue, so boss time spent on communications is a

good measure of how long the communications themselves (without blocking waits)

took.

 The worker processes do block, which explains their much larger fraction of time

spent in communication (or waiting for communications).

 Multiple measurements were made of the speedup for different cluster sizes running

the shared queue prototype and performing 1000 iterations of the subject program.

The speed up is based on the run time for the shared queue prototype compared to the

run time for 1000 iterations of the serial implementation. The speedup measurements

are presented in Figure 11.

Figure 11: Speedup of misc.002 for the shared queue prototype

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 5 10 15 20 25

Sp
e

e
d

u
p

 c
o

m
p

ar
e

d
 t

o
 s

e
ri

al

Number of processors

Shared queue speed-up

Shared queue speed-up

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

48

From the speedup measurements and a measure of how much work is unique, it is easy to

determine the efficiency - that is, how much benefit was derived from each new processor

added to the cluster. In Figure 12, we see that the efficiency is approximately 50%.

Unfortunately, the effects of uncontrolled performance factors are large compared to any

cluster size scaling effects for the cluster sizes investigated. This makes it impossible to

extrapolate the effect of cluster size on the efficiency and determine a cluster size where the

efficiency is no longer acceptable.

Because of the worker time spent blocked on communications and the very short run and

analysis times for the subject, this example does not scale very well with added processors.

Efficiencies are under 60% in every case for cluster sizes of 4, 8, 16, and 20. They are fairly

consistent for the different sizes, however.

Figure 12: Efficiency of misc.002 for the shared queue prototype

Figure 13 shows the percent of run time as a function of number of processors for this

program. These data show that the communications overhead is very small (<0.5%), even in

this nearly worst-case program, but the time spent blocking by workers while the queue

builds up is a concern. It appears approximately quadratic in the number of processors, so the

blocking wait time would start to dominate the run time at around 100 processors (for 6000

iterations); the effect reduces as the iteration count grows. It is harder to estimate the actual

communications time from this data. The noise in the measurements (due mostly to not using

dedicated machines or network connections) is comparable to the effect being measured.

However, if we assume a linear growth
9
 in the communications time with the number of

processors it would take approximately 300 worker nodes to reach 10% of the run time spent

on communications cost.

9 As we will see below, linear growth is probably not a good assumption.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 5 10 15 20 25

Ef
fi

ci
e

n
cy

Number of processors

Shared queue efficiency

Shared queue efficiency

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

49

Figure 13 [Misc.002] Fraction of total run time spent on communications by Boss and average

worker, as a function of the number of processors in the cluster. The Boss uses non-blocking

communications, since there might be other work to do, while the workers use blocking

communications because they are requesting their next work item from the Boss and don’t

have other things to do until receiving that work. As such, the difference between the Boss

and Worker timings provides an estimate of the time spent blocked by an average worker.

The primary issues are probably that the communication incurs some indirect costs in extra

object constructions during the serialization and deserialization needed to transmit inputs, as

well as having one processor in the queue dedicated to coordinating communications while

not doing any analysis work. A more complex design could reduce the penalty for the second

issue in cases where the communications load is small, but there is little that can be done

about the first issue. The effect is reduced for even slightly more complex toy programs,

however (cmd_args.005 is close to 80% efficiency, for example).

Running independent agents with random initial seed inputs for each engine produces very

poor scaling in terms of unique work done, as shown in Figure 14. With 5 nodes,

approximately 40% of the work is unique; however, with 40 nodes, it is about 20%. So, even

with small clusters, in this example the efficiency is very poor, and as the cluster grows the

efficiency drops rapidly. This is a program that validates input at the start (it checks for the

existence of argv[1], and then checks to see if it can be interpreted as an integer.) Poor

performance is expected in this case for random seeds.

From the raw numbers graph, another fact becomes obvious. In a test case with a large

number of paths, the raw numbers of paths generated and unique paths generated are not the

interesting quantities. The interesting information is in the ratio of unique paths over total

paths. This fraction tells how efficient the process was at producing new information during

the run, and so can be sensibly compared to the efficiencies produced in analyzing the shared

queue prototype. This is a much more valuable measure than the total work for another

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016

0 5 10 15 20 25

Fr
ac

ti
o

n
 o

f
to

ta
l r

u
n

ti
m

e

Number of processors

Runtime fraction spent on
communications

Boss run fraction

Worker run fraction

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

50

reason. The random initial inputs and crafted initial inputs prototypes both have close to zero

communications load during an analysis of a subject. Because of that, the total work done is

almost exactly the work done by a serial process times the number of processors. However,

the lack of communications means that the different processes in the cluster can‘t coordinate

their efforts to avoid duplicate work. It is this duplicate work that prevents the net efficiency

from being ~100%.

Figure 15 presents this efficiency measure for the random initial inputs and crafted initial

inputs prototypes.

Figure 14 The total number of paths produced by a cluster of independent agents starting

from random seeds, and the number of those paths that are unique, both as a function of the

size of the cluster.

(The physical cluster in use has 20 nodes, but since the only distinguishing characteristic of

different nodes in this architecture is that they start from different random initial inputs, the

physical cluster can be run multiple times and the results produced can be merged to show

the results from an equivalent larger cluster)

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50

N
u

m
b

e
r

o
f

p
at

h
s

Number of processors

Total and unique paths produced

Random total paths

Random unique paths

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

51

Figure 15: Unique work done by the random initial input and crafted initial input prototypes

as a function of the number of processors in the cluster. The measure is just the number of

unique execution paths generated divided by the total number of execution paths generated

by the measured cluster. Uniqueness of the execution path is determined by whether the

sequence of blocks traversed in the trace is unique.

o Misc.003: a program that is designed to have very simple computation and no input

validation, and so emphasizes the communication overhead (even more than misc.002).

 The lack of validation reduces, but does not eliminate the overlap between

different instances of the random initial inputs or crafted initial inputs prototypes.

Even designing a program with no input validation, each independent processor

explores paths with illegal numbers of input arguments, so there is still some

overlap in work. The only way to avoid all of such overlap is to design a search

heuristic that completely deprioritizes paths that are likely to be common to all

independent processes.

 The random initial inputs and crafted initial inputs produce acceptable unique

work efficiencies for small numbers of processors, but not for larger numbers, as

discussed below.

 Extensive studies of the response of the shared queue prototype to additional

communications loads were performed with this subject program. They are

described in detail below.

The unique work fraction for the random initial input and crafted initial input prototypes is

shown in Figure 16. The data displays one of the problems of the crafted initial inputs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50

Fr
ac

ti
o

n
 o

f
to

ta
l w

o
rk

Number of processors

Unique work efficiency

random initial inputs
unique fraction

crafted initial inputs
unique fraction

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

52

Figure 16: Unique work as a fraction of total work done by the random initial inputs and

crafted initial inputs prototypes for test subject misc.003

prototype. In most cases, selecting inputs that explore well separated parts of the space of

possible execution paths is not trivial. In fact, studies show that developers designing test

cases believe they are achieving 90+% statement coverage, when on average they are

actually achieving 50-60% statement coverage [87]. This becomes even more of a challenge

when a developer tries to select test cases that not only cover different parts of the subject

program, but that also are well separated in the exploration tree of concolic execution. In the

generational exploration pattern chosen by GraCE, the analysis of each execution of the

subject can produce multiple new inputs that that diverge from their parent at some branch

point. However, what the child does after that divergence is not constrained in the SMT

solution process. If two instances of GraCE that are acting independently to analyze the same

subject, starting with different initial inputs, follow the same execution path through N

branch points, and then diverge at branch point N+1, it is possible, and even quite likely that

the SMT solutions produced in the different instances for inputs that behave differently at the

first N branch points will be the same in both GraCE analyses
10

. This will prevent the

exploration by independent agents from ever reaching 100% efficiency, no matter how the

independent agents are seeded.

10 It is possible and likely, but not certain. The analysis in the SMT solver is non-deterministic, so it may produce
different solutions for the same set of conditions in any under-constrained case.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50 60 70

Fr
ac

ti
o

n
 o

f
w

o
rk

 t
h

at
 w

as
 u

n
iq

u
e

Number of processors

Unique work efficiency

Random initial inputs unique
fraction

Crafted initial inputs unique
fraction

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

53

This subtle lesson in the nature of the concolic exploration of the space of all possible code

paths was not obvious to us before experimenting with the parallel prototypes, but implies a

limit to the utility of any independent agent design.

The shared queue prototype provided acceptably high efficiencies, as seen in Figure 17.

Figure 17: Parallel efficiency for the shared queue prototype running 5000 iterations on test

misc.003

Again any projection to determine scaling is undependable. If there is a trend in the data, it is

hidden by the noise in the measurements. A different approach is to look at the time the boss

spends on communications for different cluster sizes, as seen in Figure 18. The scaling with

extra processors in this case appears non-linear; extrapolating the communications costs

indicates that communications costs will be more than 10% of run time with less than 40

processors.

The current prototypes only process command line inputs. In most programs, such inputs are

very small, so the communications cost of transmitting them around the cluster is also small.

However, the full set of inputs to a general program can be quite large. Images, spreadsheets,

and substantial text documents are several orders of magnitude larger than typical command

line inputs. Even though the current version of the core engine doesn‘t analyze such inputs, it

is possible to simulate the cost of transmitting them. To do so, a small modification was

made to the shared queue prototype so that each input description sent between the central

queue and a worker was burdened with a character string of extra data
11

. The size of the

string is a parameter that can be set when invoking the prototype.

11 There is no need to consider extra input data for the random initial input and crafted initial input prototypes.
They do not pass descriptions of the inputs between nodes during the analysis.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

Ef
fi

ci
e

n
cy

Number of processors

Shared queue parallel efficiency

Parallel efficiency

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

54

Figure 18: Boss communications times for 5000 iterations of misc.003 with the shared queue

prototype. Total wall clock run time for 20 processors was ~800 seconds, so communications

were never more than 2% of total run time.

Figure 19: Wall time in seconds for 1000 iterations of misc.003 with 4 KB of extra data loaded

on each communication of an input set. The times for this test are averaged from multiple

runs of each configuration to minimize the influence of uncontrolled factors in the cluster. Run

times are very similar to those measured with no additional load, and also show efficiency

scaling close to the no additional load case

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0 5 10 15 20 25

Ti
m

e
 s

p
e

n
t

in
 c

o
m

m
u

n
ic

at
io

n
s

fu
n

ct
io

n
s

b
y

th
e

 B
o

ss
 p

ro
ce

ss

Number of processors

Boss communication time with changing
processor count

Boss communication time with
changing processor count

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0 5 10 15 20 25

Ti
m

e
 in

 s
e

co
n

d
s

Number of processors

Parallel run time with 4 KB extra data
load

Parallel run time with 4
KB extra data load

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

55

The first test for response to an additional load was to study the wall clock execution time for

1000 iterations of misc.003 with 4 KB of extra data. Typical generated inputs for this test are

less than 100 bytes, so the data load was increased by a factor of more than 40 for this test.

Figure 19 shows that the scaling as the number of processors increases for this additional

load is reasonable, while comparisons of the measured times with those for the no additional

load case show very little change. 4 KB is apparently not enough load to affect the cluster

operations.

The 20 node cluster has the most complex communications, so we would expect it to show

effects from increased load before any others. It also has the shortest run time, and so is a

good candidate for a test cluster for studying varying loads. For each value of the load, three

data sets are collected and averaged, to reduce issues with uncontrolled variations in the

conditions for the cluster.

The first interesting measurement is how the run time scales with the increasing load. Figure

20 shows that the scaling is approximately linear for a small load, and then changes character

when the load passes some threshold. The graph is on a logarithmic scale, so change in slope

implies a transition from scaling as one power of the load size to scaling as a different power

of the load size
12

. The large increase in slope shows that the exponent in question has grown

substantially. Generally such a change in character of the results happens when the dominant

factor in determining behavior changes.

Figure 21 shows that the additional load has a substantial effect on the behavior of the boss

process. In earlier examples the node running the boss process was underutilized. However,

as the load grows, so does the utilization of the boss process node. For large data loads, the

boss process is busy almost constantly. This makes the design change to place the boss

process and a worker on the same computing node sharing resources far less appealing;

programs with data loads on the order of 10-100MB will keep the node handling the shared

queue busy.

12 Remember that functions with power law scaling produce straight lines with slope equal to the power on
logarithmic graphs.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

56

Figure 20: Time to run 1000 iterations of misc.003 on a 20 node cluster with varying extra data

load. The load runs from a minimum value of 0.25 KB, up to 16 MB. Run times are reasonably

stable with extra loads of up to 64 KB, but increase quickly with larger loads

Figure 21: The fraction of the total run time for the queue boss process that was spent actively

processing communications requests.

1.00

10.00

100.00

1000.00

10000.00

0.1 1 10 100 1000 10000 100000

R
u

n
 t

im
e

 in
 s

e
co

n
d

s

Additional load in KB

Loaded test run time

Run time

0

0.2

0.4

0.6

0.8

1

1.2

0.1 1 10 100 1000

Fr
ac

ti
o

n
 o

f
to

ta
l t

im
e

 s
p

e
n

t
o

n
 a

ct
iv

e

co
m

m
u

n
ic

at
io

n
s

Additional load in KB

Queue boss active fraction

Queue boss active
fraction

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

57

The worker processes are also strongly affected by the increased load. This is not hard to

understand if we consider the way the extra load was mocked up in the prototype. No

analysis is done of the extra data. It is transmitted and then ignored, only to be transmitted

back at the end of the analysis iteration. So, the time spent on tracing the subject program and

analyzing the trace is unaffected by transmitting the extra data. However, the run time grows

by orders of magnitude. So, just as we see in Figure 22, we expect that the worker

communication time will come to dominate the total run time for the workers.

This measurement shows a stair step like structure that is very reminiscent of a physical

phase transition. It is beyond the scope of this investigation to determine whether there is a

real phase transition in this behavior, and if so the nature of that transition. However, it is

worth noting that similar phase transitions have been observed in small world network

studies of information transfer. If this is a similar phenomena, we would expect the behavior

to depend on the size of the cluster, the size of the data load, and how interconnected the

communications are
13

.

Figure 22: Fraction of worker process run time while analyzing misc.003 used in

communications functions as a function of the additional data load. Note the extreme

transition in behavior between 64 KB and 1 MB

The average time to send one megabyte of data decreases as the size of the individual

messages increases. This is consistent with the design of MPI, where there is a fixed cost to

establish a send/receive connection between two nodes, and then a per megabyte cost for the

transmission. As we see in Figure 23, as the size of individual messages increases, this fixed

cost becomes less important in measuring the communications bandwidth.

13 The communications on an Ethernet network in a single subnet are very interdependent. Each node can see the
packets sent by other nodes, and no two nodes can transmit packets at the same time. A more complex switching
configuration would vary this constraint.

0

0.2

0.4

0.6

0.8

1

1.2

0.1 10 1000 100000

Fr
ac

ti
o

n
 o

f
w

o
rk

e
r

ti
m

e
 s

p
e

n
t

o
n

 a
ct

iv
e

co

m
m

u
n

ic
at

io
n

s

Additional load in KB

Run fraction for communications

Run fraction for
communications

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

58

Figure 23: Average time spent transferring 1 MB of data between processes as a function of

the additional data loaded into the process while analyzing misc.003. Transfers get markedly

more efficient as the size of the data package increases

However, the messages still take longer as the size of the messages increases, as seen in

Figure 24. This is again expected from the design, and is very consistent with a fixed

connection cost plus a per byte time cost for sending messages.

Figure 24: The average time taken to send one message containing an input set while

analyzing misc.003, as a function of the additional data loaded into the input set. Although the

figure above shows that the communications get more efficient as the messages get larger,

this figure shows that the growth in size of the messages scales faster, so the net result is that

each message takes longer.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.1 10 1000 100000

Ti
m

e
 in

 s
e

co
n

d
s

Additional load in KB

Time per megabyte transferred

Time per megabyte
transferred

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 10 1000 100000

Ti
m

e
 in

 s
e

co
n

d
s

Additional load in KB

Time per message

Time per message

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

59

The number of paths through the code is very large, so the path coverage for analyses with

thousands of iterations is close to zero
14

. However, for all three prototypes the statement and

branch coverage quickly reaches 100%.

o Misc.004: This program displays an overrun of a small buffer on the stack. Characters in the

input are placed sequentially in the buffer, and if there are more than 20 characters, the buffer

is overrun.

 The program exposed a bug in the handling of register flags. The system

exception handling code manipulates flags not normally accessed by user code.

The flag handling code has been changed to understand these flags, and now also

analyzes the exception handling code.

 The exception handling code is extremely complex, and although GraCE analyzes

it and produces inputs for further exploration without crashing, it is currently too

slow to be usable.

 Designs are under consideration to make this process more efficient.

 This example is unusual in that the random-input prototype triggers the bug more

quickly than the shared-queue design, because the random choice of inputs more

quickly produces inputs that are large enough to trigger the bug. The path

exploration for the shared queue tends to grow the size of the input one character

at a time.

Both the random and crafted seeds versions find the overrun – typically on the first iteration,

and crash the subject and GraCE. The shared queue, that starts with argc=1 (no command-

line arguments) as the first input, doesn‘t find the overrun in 10,000 iterations. The problem

is that emphasizes breadth in coverage of the available characters and of the number of

arguments as the first preference. Just adding new characters happens late, and every time it

adds a new character, it checks that new character with many combinations of old characters.

The longest input achieved was about10 characters, so the program would have run for a long

time before finding the overrun. Lines of code coverage, and branch coverage were 100% for

this, but path coverage was poor.

o No_validation.003: A program that does no input validation and searches the input for

matching characters, reporting any matches.

 The program doesn‘t validate its input, but the count of matching character pairs

needs to see matching pairs to execute.

 The random inputs design produces very few matching pairs, and so needs many

iterations to explore the counting code. The crafted inputs explore that code right

away. Thus the crafted initial inputs design has reasonable efficiency, but the

random initial inputs design has poor efficiency, as seen in Figure 25.

14 The code reads 4 characters and places them as the four bytes in a 32 bit unsigned integer. Then it uses a sequence

of if tests to produce a second integer with the bits in the opposite order. This provides more than 2 to the 32 paths

through the subject.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

60

 Data for 20 processors with a shared queue prototype shows an efficiency ranging

from 82% to 102% over multiple trials, so the scaling should be very good, and

there is no chance to measure a potential scale issue from this. (The 102%

efficiency is obviously connected to the changing and uncontrolled loads issue

producing noise in the data. There is no theoretic reason that the design should be

able to produce super-linear scaling)

Figure 25: Fraction of unique work produced by the random initial inputs and crafted initial

inputs prototypes for no_validation.003 as a function of the number of nodes in the cluster

Serial

Random
Inputs

Crafted
Inputs

Shared
Queue

Lines Executed 60.56% 95.77% 95.77% 95.77%
Branches
Executed 68.00% 84.00% 84.00% 84.00%
Jumps Taken at
Least Once 56.00% 80.00% 80.00% 80.00%

Detailed coverage measurements show that for 1000 iterations all three prototypes achieve

high coverage. In a similar amount of time, the serial version of GraCE can perform 50

iterations, and coverage numbers are shown for that total.

o No_validation.005: This program looks for the first character in alphabetical order in the

provided input.

 This is a good example of a program where the efficiency for the crafted inputs is

high, as seen in Figure 26.

 Branch and statement coverage for 1000 iterations is close to 100%.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

Fr
ac

ti
o

n
 o

f
to

ta
l w

o
rk

Number of processors

Unique work fraction

Random initial inputs
unique work fraction

Crafted initial inputs
unique work fraction

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

61

Figure 26: Fraction of unique work produced by the crafted initial inputs prototype for

no_validation.005 as a function of the number of nodes in the cluster

o Validation.003: This program has substantial input validation (It chooses winning hands

among input poker hands).

 As expected the random-input design does exceptionally poorly.

 The crafted-input design can do quite well, because the user can choose inputs

that are known (because of knowledge of the program) to reach deep into the path

space. See Figure 27.

 The shared queue prototype with 20 processors produces efficiencies ranging

from 67% to 89% based on multiple runs. The upper range of this data is quite

close to the theoretic maximum of 95%.

Only the crafted inputs do well at exploring the code, however. The coverage for the other

versions is very poor even for 1000 iterations. This is because the input validation is very

stringent. The only inputs that succeed in validation are those for which the input matches

possible poker hands in the chosen input notation. Only the crafted initial inputs prototype,

with some provided inputs that provided valid hands managed to explore beyond validation

in 1000 iterations.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

Fr
ac

ti
o

n
 o

f
to

ta
l w

o
rk

Number of processors

Unique work fraction

Crafted initial inputs
unique work fraction

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

62

Figure 27: Fraction of unique work done by the crafted initial inputs prototype on

validation.003 as a function of the number of nodes in the cluster.

Serial

Random
Inputs

Crafted
Inputs

Shared
Queue

Lines Executed 24.69% 24.69% 92.89% 25.94%
Branches
Executed 23.64% 23.64% 93.64% 25.45%
Jumps Taken at
Least Once 20.00% 20.00% 86.36% 22.73%

7.5.2 Medium-size programs that do real work.

These programs range up to a few thousand lines of code with compiled sizes that range up to

.5MB. The execution paths are complex and sometimes non-deterministic. Thus, appropriate

crafted inputs are not obvious. With these programs, analysis time (~90%) dominates subject

program running time. Communication is less frequent and therefore communication overhead is

not an issue (and is even difficult to measure accurately without introducing additional

communication loads).

o Ai_test.002: This program does some simple natural language processing with a dictionary of

about 60 words and several parts of speech and structures.

 Shared queue communications time is less than 0.01% for 6000 iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

Fr
ac

ti
o

n
 o

f
to

ta
l w

o
rk

Number of processors

Unique work fraction

Crafted initial inputs unique
fraction

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

63

Figure 28 [AI_test.002] Fraction of unique work done by the random initial inputs and crafted

initial inputs prototypes on ai_test.002 as a function of the number of nodes in the cluster

 No measurable trend in the communication time for the various cluster sizes is

apparent for the measurements made so far.

 There is no way to project when the queue will become a problem from this data,

since communications time is low across all our measurements.

 Queue behavior for large loads is measurable.

 Unique work for random seeds is better than expected, but still a poor ~25% for 20

processors.

 The crafted input design does better, but still has less than 50% efficiency for 20

processors.

Figure 29: Parallel speedup for the shared queue prototype applied to ai_test.002

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

Fr
ac

ti
o

n
 o

f
to

ta
l w

o
rk

Number of processors

Unique work fraction

Random initial inputs
unique work fraction

Crafted initial inputs
unique work fraction

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Sp
e

e
d

u
p

 c
o

m
p

ar
e

d
 t

o
 s

e
ri

al

Number of processors

Parallel speedup

Parallel speedup

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

64

Figure 30: Efficiency for the shared queue prototype applied to ai_test.003 as a function of the

number of nodes in the cluster

For the available cluster sizes, this class of larger programs scales well, with efficiencies

close to 70%, and consistent to within the measurement errors induced by uncontrolled loads

on the processors and network. Figure 29 and Figure 30 show the speedup and efficiency for

the shared queue prototype.

We measured the start up costs associated with queue filling for this case, to provide some

estimate of the effect of queue filling on the overall efficiency. The results indicate such costs

exist, but they are inconclusive about how to project the costs to large numbers of nodes.

We ran several short trials with different numbers of processors and extrapolated the time

spent on communications for a worker down to 0 iterations. If there are no startup costs, this

would extrapolate to 0, but an offset in the intercept would show there is some initial cost

before the processors are all running. Because the initial establishment of the

communications in the cluster are not included in this timing, the cost is the time spent

waiting while the queue fills enough to supply all the workers with tasks.

Figure 31 shows that the trends clearly do not extrapolate to zero, but they also don‘t give a

clear estimate for the queue filling costs. (Two of the data points for 20 processors are hiding

under points for 16 processors, and so are hard to see.) We did not include extrapolation lines

in part because 2 of them have negative slopes, which is clearly unbelievable. The boss times

for these runs (which would measure how long the actual communication took, without

waiting in the queue) were less than a second, so the queue waiting time at the start of the run

is substantial.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25

Ef
fi

ci
e

n
cy

Number of processors

Parallel efficiency

Parallel efficiency

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

65

Figure 31: Measuring the start up costs due to queue filling for the shared queue

prototype applied to ai_test.002. Note that the data values for 20 processors and 16

processors happen to overlay for both 25 iterations and 100 iterations.

A study of response to additional communications loads similar to that performed for

misc.003 was also produced with ai_test.002. Similar results were seen, with an offset in the

scale of the effect. This is because the individual runs of the subject and analysis are multiple

orders of magnitude longer for this program than for misc.003, so communications effects of

a similar time scale will be less noticeable in this setting.

Figure 32: Total time spent performing active communications for the shared queue

prototype as a function of the additional communications load.

0.00

50.00

100.00

150.00

200.00

250.00

0 20 40 60 80 100 120

Ti
m

e
 in

 s
e

co
n

d
s

Number of total iterations

Worker queue time for short runs

20 processors

16 processors

8 processors

4 processors

0.10

1.00

10.00

100.00

1000.00

10000.00

0.0001 0.01 1 100 10000

Ti
m

e
 in

 s
e

co
n

d
s

Additional load in KB

Queue boss work time

Queue boss work time

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

66

Figure 33: Fraction of the total boss process run time spent on communications for the

shared queue prototype analyzing ai_test.002. Loads run from 4 KB to 4 MB, but

notice even the worst case time is only just over 2%

What about traces produced by the random and crafted versions? The random version

quickly drops below 30% efficiency, while the crafted version fares better as we see in

Figure 28. This result may improve with a more insightful choice of initial inputs, but there is

a real problem driving much of this drop off, as explained earlier.

Coverage numbers are poor for the serial engine; in the same time crafted inputs produce

much better coverage using 20 processors. The measurement for the shared queue used twice

the wall clock time that the serial engine used and 20 processors, but in that time produced

almost complete coverage.

Serial engine

Initial Crafted
Inputs

2000 generated inputs
shared queue

Lines Executed (of 168) 25.00% 88.10% 97.62%

Branches Executed (of 84) 7.14% 88.10% 100.00%

Jumps Taken at Least
Once (of 84) 4.76% 67.86% 91.67%

0

0.005

0.01

0.015

0.02

0.025

1 10 100 1000 10000

Fr
ac

ti
o

n
 o

f
to

ta
l r

u
n

 t
im

e

Additional load in KB

Queue boss fraction of run time

Queue boss fraction of
run time

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

67

o Ai_test.003 – an open-source ant colony optimization program. This program has non-

deterministic paths because it uses randomization as part of the analysis.

 The exploration found bugs in the code and caused crashes with crafted inputs and with

shared queues where the iteration count was large.

 However, with random inputs and decent iteration counts (~1600), the engine explored

the initial validation code, which did not have crashing bugs.

 Because all the random inputs were exploring validation code, the performance is quite

poor.

 The branch and statement coverage was about 25%.

Figure 34: Fraction of unique work produced by the random initial inputs prototype applied to

ai_test.003 as a function of the number of nodes in the cluster

o Ai_test.004: An A* search

 This program requires some table look-up in the determination of paths, which the

current engine does not support and so with future improvements we expect improved

exploration.

 There is substantial input validation that largely kills random exploration.

 Some sets of 5 nodes in this data retrace the same collection of paths exactly

 None of the random input workers escapes the validation section of the code

 The shared queue prototype generates unique paths, but spends many iterations

exploring the validation code without ever finding a set of inputs that enters the search

code (of order 2000 iterations to find a valid input).

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

0 5 10 15 20 25

Ef
fi

ci
e

n
cy

Number of processors

Unique work fraction

Random initial inputs
unique fraction

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

68

Figure 35 Fraction of unique work done by the random initial inputs prototype applied to

ai_test.004 as a function of the number of nodes in the cluster

There is not a full study of scaling for the shared queue. Run times for the tests were long, so

it was not practical to do many of them. However, for 20 processors, the efficiency was about

36%.

The number of new inputs produced by a single iteration was small (usually 1 or 2) according

to the output logs, so queue filling was very slow. Worker queue time was more than 200

times as large as Boss queue time, which means that the workers were spending a lot of time

blocked waiting for new input. Boss queue time was small compared to subject run time and

analysis time, so the Boss had very little communications work to do. This is exactly what

you would expect when the queue is empty for much of the run time, and the workers are idle

waiting for something to do.

This gives an example of a type of program that is hard for parallel concolic to analyze: one

in which each new iteration sees very few unexplored branch points. In this program, that is

because many of the branches are determined by table look-ups. As we enable GraCE to

explore table look ups intelligently, results on this test will get much deeper, very quickly.

7.5.3 Larger programs that do real work.

These programs are large and complex enough to be the main body of a real application. They

have been modified to not use file input (all input is as text on the command-line) because of

some current limitations of GraCE. The analysis times are very long; analysis in serial mode is

impractical. The code sizes are 10K to 100K source lines and multiple MBs of compiled code.

We have no fully analyzed examples in this category. They were useful as demonstrations of

capability (and of issues needing repair), but the running time was too long to produce full

analyses or repeated experiments within the time-frame of this project.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25

Ef
fi

ci
e

n
cy

Number of processors

Random initial inputs unique fraction

Random initial inputs
unique fraction

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

69

8 Reliability and performance testing of the concolic engine

A key part of developing a new capability is testing it for consistency and reliability during the

development process and for regressions after primary development. In the work under this

heading, we put in place a testing framework, built on the regression testing facility that

GrammaTech uses for other research and commercial projects. In addition, the framework was

extended to measure the performance of various parallelization options.

Sequential Concolic Test Script: The nightly regression testing script includes checks to

thoroughly determine successful concolic execution of a subject program. Correctness checks are

performed for each test case – including recognition of basic concolic errors in the execution

logs and checks of the full log output. The test script also allows the tester to specify initial

inputs to the concolic execution. If desired, the tester can also provide critical inputs that a

concolic execution is expected to generate, and the script provides the ability to make the

existence of these inputs a success criterion.

The infrastructure allows us to

 Easily add new tests to a test suite, with given expected outputs

 Categorize tests as ‗expect to succeed‘ or ‗expect to fail‘. The latter category might

include test cases that exercise capabilities that are not yet implemented or have known

bugs.

 Run the test suite as part of a nightly buildbot process, with the results available on a web

page as the tests run.

 Run the test suite on a variety of machines, either as serial processes or as groups of

parallel cooperating processes.

 Use the infrastructure to measure both raw execution performance and code coverage.

The infrastructure is useful in maintaining a working tool within this project but will also be

useful in follow-on projects that use the GraCE tool.

With the infrastructure in place, the test suite was greatly enhanced. It now includes groups of

tests to assess the following:

 Tests that check that individual machine code instructions are being properly interpreted

by GraCE.

 Regression tests that include examples that were problematic at one point in the past, are

now fixed, but continue to be tested so that they remain fixed.

 Tests that exercise the parallel processing capability.

 Tests that use real-world, open-source programs adapted where necessary to run with

GraCE. These are larger scale, longer-running programs.

Coverage Analysis: The GraCE tool is intended to find new execution paths in a subject

program. If the program has only a finite number of paths, the tool should find all of them. If the

subject program has an infinite number of paths, the tool‘s search algorithm should concentrate

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

70

on the most important. Thus it is useful to have a metric by which to measure the quality of set of

execution paths that GraCE finds.

As an initial measurement of GraCE‘s performance, we use line and branch coverage metrics.

That is, we use GraCE to generate a set of inputs that execute a subset of the subject program,

then use those inputs as a test set for the subject program, and then measure the line and branch

coverage we obtain with that set of inputs. Line coverage is the percentage of lines in the source

code that are touched by at least one execution of the subject program, while branch coverage is

the percentage of branches covered by at least one execution of the subject program. Branch and

statement coverage can sometimes be misleading, because simply having even complete branch

and statement coverage does not mean that all interesting combinations of behaviors have been

tested. Nevertheless, the metrics do provide some initial feedback as to how a parallel prototype

is performing relative to the baseline sequential execution on the test suite.

Parallel Concolic Test Script: The test script allows multiple versions of the concolic engine to

be executed on each test case in the suite. For each parallel prototype created, nightly tests can be

executed to verify correctness and report performance gains against the baseline using the

aforementioned coverage metrics, as well as timing metrics. On a single test case, we can obtain

line and branch coverage values for the baseline sequential concolic execution and for all parallel

prototypes. These results can then be compared to identify performance changes experienced by

the various implementations. Many of the future parallel performance measurements will branch

from the base laid out here.

Subject program error detection: An area of testing commonly missing from test suites is error

recovery. In GraCE‘s case, when the subject program fails, we want to be sure that the

controlling engine does not itself fail. Rather, when a subject program reaches an instruction that

produces an error (such as a divide by zero or invalid memory access) the concolic engine should

be able to detect this and handle the error gracefully. Such tests are particularly crucial for

GraCE since a goal of concolic execution is to find very rarely executed code branches which are

then more likely to be buggy or more likely to be malicious. Tests were added to ensure that

error paths were tested.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

71

9 Robustness and scalability improvements to the concolic engine

As part of using and testing GraCE as a component of a broadly distributed tool for finding

malicious code, we needed to improve the robustness and scalability of the core concolic engine.

We concentrated our improvements to the concolic engine itself in the following areas:

1. Validation of the underlying semantics

2. Handling of alternate input mechanisms

3. Correction of problems that inhibit scalability of the engine

Item (1) is discussed in section 10.

Item (2) requires a change in the QFBV logic library that encodes the semantics. This change is

completed, but not the additional implementation of alternate input mechanisms. While it would

enlarge the set of real-world programs that could be used in assessing parallelization, it is not

essential to the fundamental results of the intended research program.

Under item (3) we investigated a number of problems, as described below.

9.1 Optimizing concolic execution

9.1.1 Modify and improve SDT utility

Concolic execution depends on software dynamic translation (SDT) to produce the traces and

context information used in the analysis. The utility used by GraCE is an in-house SDT tool, so

the source code is available to the developers. Inspections of the code and its use showed that

there were several instances where system-wide resources were used in a way that was not

compatible with concurrent operations. Consequently, the utility code was modified to improve

the ability to run in a concurrent setting.

This work included removing the use of some environment variables that enabled interprocess

communications and changing the invocation method for the tool so that it is a statically linked

library instead of a separately invoked executable.

Several other smaller issues, and some interface clean up were addressed at the same time.

9.1.2 Modifying the concolic engine

GraCE wasn‘t originally developed with concurrent operation in mind, so it also had some

potential issues that had to be addressed. In addition, the changes in the SDT tool also implied

changes in how SDT is invoked in the concolic engine. Also, there were some simple interface

changes that were needed to support some of the prototypes.

Specifically, the engine was modified to accept arbitrary initial inputs for the subject program

from the user, instead of generating the initial input internally. The use of environment variables

to communicate with the subject program was removed; the use of named pipes for more

extensive communications was modified so interactions between concurrently running

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

72

controllers are eliminated. Some improvements to the base serial engine were produced,

extending its range of utility and its stability with regard to a failing subject program.

The use of the concolic engine was also modified to separate the functionality from the calling

methods. Consequently, the engine can be used in some of the prototypes without need for any

large scale changes in the code.

9.1.3 Installing and testing the framework for distributed computation

One of the major complications of distributed computation is the overhead of starting processes,

controlling their behavior, and passing messages. This overhead is largely abstracted away by the

use of the MPI framework as part of the distributed code.

MPI is a separately specified distributed computing framework built for cluster computing with

very low additional footprint and high speed communications. It is a very common tool in the

High Performance Computing community, and it is well suited to problems where the number

and configuration of nodes in a cluster is known in advance. It is also fairly easy to transform a

cluster implementation into a grid implementation, since many grid computing projects began as

cluster projects written using MPI.

The implementation of MPI we chose to use is MPICH2, from Argonne National Laboratories. It

is widely used, efficient, stable, and works well in a Windows XP environment. It implements

the MPI 2.2 standard, and it provides a wide palette of methods for control and communications.

MPICH2 was installed and tested on multiple local test machines. It worked correctly and

supported prototype development.

9.2 General problem correction

Handling subject program crashes.

A key improvement was to make GraCE robust against crashes in the subject program. Since

GraCE intentionally looks for problematic subject program code, this improvement was an

important one to make. Finding problems of this sort was a key goal of the effort to build and

extend the test framework described in Section 8.

Failures in Windows pipe connections. One issue highlights a problem with the overall

Windows environment. The GraCE concolic engine runs and monitors the subject program using

two components: (a) an execution engine that controls the overall execution and (b) the subject

program itself, to which we attach a software dynamic translation module (SDT) that provides

(among other services) communication back to the execution engine. That communication

happens through Windows pipes; these pipes are reconstructed for each run of the subject

program. The construction of Windows pipes can randomly fail (Windows does not guarantee

that the operation succeeds). The failure rate is low, but, over many iterations, the number of

failures is noticeable. The failure happened often enough to affect long running data collection.

This problem was analyzed and corrected. We replaced the named Windows pipe with a cross

platform shared memory resource provided by Boost Interprocess mechanisms. In addition we

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

73

changed the design to construct the pipes only once (rather than on each iteration), further

reducing the failure rate.

The increased reliability will be a benefit for the usefulness of a distributed system overall.

Stack Overflow. Part of our test suite exposed GraCE to inputs that are strenuous for the engine.

These stress tests showed that the engine overflows its stack space when it encounters basic

blocks of very large size. Because basic blocks of the size required for crashing GraCE are not

usually encountered in realistic programs, we chose to address this issue by increasing the size of

the stack space allocated for the concolic-execution engine rather than by proper elimination of

recursion. Increased stack space also addressed the issue of stack overflows in the Yices SMT

decision procedure that we encountered in our previous work on the engine. Yices, developed at

SRI International, is an essential component of the concolic-execution engine—it is used by the

engine to derive program inputs from logical encodings of execution traces. While we have the

source-code license for Yices, we would prefer to avoid modifying it to eliminate stack

overflows.

Division. We also identified and fixed bugs in our handling of bit-vector division operations. The

version of Yices we are using does not provide bit-vector division as a native operation. Thus,

we modeled division by introducing two free logical variables—one for the quotient (Q) and one

for the remainder (R)—and adding corresponding constraints on the values of their variables. Let

A denote the dividend and B denote the divisor. Our implementation of division follows signed

integer division from the C programming language. Specifically, we add the following

constraints:

A = Q B + R

0 ≤ |R| < |B|

A < 0 R ≤ 0

A ≥ 0 R ≥ 0

The first constraint links together the values of A, B, Q, and R. The second constraint makes sure

that the remainder does not exceed the divisor. The last two constraints make sure that the

remainder gets the proper sign (the same as the sign of the dividend).

The formulation of the logical constraints can affect the efficiency with which solvers such as

Yices can solve systems of constraints. For example, the last constraint can be split into two

pieces:

A > 0 R ≥ 0

A = 0 R = 0 and Q = 0

This more closely constrains the logical system, which usually improves the performance of

Yices, but it also adds more statements to the system, which usually degrades the performance of

Yices. Experiments showed that the formulation above is about 30% faster.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

74

Our original implementation of the division operation failed to account for the possibility of

overflow in the multiplication Q B. In one of our division tests, Yices picked the value of Q to

be large enough to cause overflow, which prevented the concolic-execution engine from

generating sufficient coverage of the program. We diagnosed the problem and fixed it by

increasing (doubling) the width of all the bit-vectors involved in the above constraints—this

eliminates the possibility of overflow and corrects the problem we encountered.

Cleanup. Also, we significantly cleaned up the code of the concolic-execution engine. Original

development of the engine explored several possible options for implementing concolic-

execution, such as using different methods for encoding execution traces and different search

strategies for generating inputs. Most of these have become obsolete, but were still cluttering the

source code. We have eliminated the obsolete components and simplified the concolic-engine

infrastructure wherever possible.

A portion of the concolic-execution engine had been developed jointly with a team from

Advanced Physics Laboratory at John Hopkins University (APL-JHU). APL was our

subcontractor in the OSD/AFRL-sponsored STTR under which GraCE was originally developed.

During this reporting period, we have revisited that code, extended it, and moved it into

GrammaTech source-code repository.

Assessment of correctness and scalability. Extensive thought and study was dedicated to

finding possible limitations or incorrect behaviors of GraCE and diagnosing them. The goal in

this work was to isolate root causes and improve the efficiency, stability, and scalability of the

concolic engine.

A number of technical work items were identified, and plans were developed to address those

items. Concerns include the model for errors and interrupts at the processor level, stability under

unexpected behaviors of the subject application, improvements to the generation and

simplification of SMT queries to increase solution quality and reduce processing time,

reorganization of trace collection communications to reduce the need for expensive two way

communications, and other items.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

75

10 Correctness of the underlying machine code semantics

A fundamental aspect of all concolic execution, including GraCE, is the translation of the

program into a logical representation. The logical representation is used by a constraint solver to

reason about the various program paths. Each concolic engine must implement, implicitly or

explicitly, such a translation from program to logic for each programming language that it

interprets. GraCE translates machine code instructions. If the underlying translation is inaccurate,

the concolic engine will malfunction.

In this portion of the project we conducted experiments to determine the accuracy of the

translation that is used in GraCE. That translation uses a language called TSL (Transformer

Specification Language) [59] to represent a mapping from each machine instruction to a

statement in a chosen logic, in this case, Quantifier-Free Bit Vector logic – QFBV. In this section

of our final report we describe TSL, the mechanisms used to test the accuracy of the QFBV

translation, and an extension that tests general abstract interpretations.

10.1 TSL

GraCE uses the Transformer Specification Language (TSL) along with a description of the

processor instruction set architecture (ISA) and an analysis target to translate the semantics of the

processor into a logical representation. Given a TSL specification of a particular ISA, such as

x86, TSL generates a logical representation of instructions in that ISA that can be used for

analyzing executables written in that ISA. It does so by instantiating the TSL specification with

an interpretation that specifies the particular kind of logical representation desired. One

advantage of using TSL as a specification language for processor semantics is that if one has n

TSL specifications for various ISAs, and m interpretations for various representation techniques,

then one can generate n*m analysis engines in much less time than it would take to create them

by hand by separately writing the n ISA specifications and the m interpretations. Thus, n+m

effort produces n*m results.

10.2 TSL Validation

To create a TSL validator for a particular ISA, we first instantiate its TSL specification with an

interpretation that defines a software emulation of the processor, thereby generating a CPU

emulator. The software emulation interpretation should maintain a state that is directly

translatable into the state of the processor, so the changes in state for the emulator and the

physical processor can be compared for different instructions in the ISA. (Such an interpretation

was already implemented and provided to the Safety In Numbers project; the point of this

exercise was to validate it.) We can then compare the generated emulator's behavior to that of the

physical processor for a number of different instruction streams and initial processor states. If

running the same test on both produces different results, the TSL specification is likely to be

wrong.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

76

10.2.1 EmuFuzzer

For the purpose of comparing the behavior of the emulator and the physical CPU, we considered

the use of a third-party tool, EmuFuzzer (cf. http://martignlo.greyhats.it/papers/EmuFuzzer.pdf)

for testing CPU emulators. Under EmuFuzzer, comparison of the emulator and the physical

processor proceeds roughly as follows.

Begin with an abstract state, a0, representing the memory and registers of the emulator before

any code is run. Executing an instruction in the emulated environment produces a new abstract

state a1. In the case of an emulator, an ―abstract‖ state should not be very abstract at all; it should

capture the entire state of the emulated processor. However, we also want to use this tool for

interpretations that transform the instructions into logical representations where the mapping

between the state of the processor and the abstract state is more abstract and less precise. In such

a case, the abstract state describing an integer register might be ―the contents are odd,‖ or ―the

contents are negative.‖)

Meanwhile, EmuFuzzer applies a concretization function to the original abstract state a0 to

produce a concrete state c0 representing the memory and registers of the physical machine.

Executing an instruction in the physical environment produces a new concrete state c1. Finally,

apply an abstraction function to c1, resulting in an abstract state a1'. For any interpretation, we

expect a1 a1' to hold. For the emulator interpretation, we expect the stronger condition a1 = a1'

to hold.

However, an alternate and simpler design allows the same comparison to be made. In the

alternate design, we start with a concrete state c0 and apply the abstraction function to it to

produce an abstract state a0. We can then execute an instruction in the emulated environment to

produce a1; execute the instruction in the physical environment in state c0 to get c1, and apply the

abstraction function to c1 to produce a1'. Notably, this design eliminates the need for the

concretization function.

c0 Initial Processor State

 c1

Final Processor State

Initial Abstract State: a0

 a1 a1'

Final Abstract State
Abstraction

Concretization

Abstract interpretation

of HW instruction

Actual HW execution

of HW instruction

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

77

EmuFuzzer is itself a new research project and not well documented, so it was unclear whether

its design would be suitable for our needs until we looked at the code. Our investigation has

resulted in a decision not to use EmuFuzzer in the TSL validator, for the following reasons:

 We would like our design for the validator to use a behavior we call look-through

semantics: when an abstract state is needed in the emulated environment and necessary

aspects of the state are missing, we "look through" to the physical environment and use

the representation given there, then perform an "on-demand" application of the

abstraction function to get the abstract state we require. In EmuFuzzer's design, the look-

through behavior is in the wrong direction—from the physical environment to the

emulated environment, rather than from emulated to physical—and the function

performed on-demand is concretization, rather than abstraction.

 EmuFuzzer's test framework requires the generation of "test cases" specifically for testing

purposes. Although this design can allow for good test coverage, it does not support

attaching to an arbitrary running process and testing the instructions being executed in

that process.

In principle, these issues could be overcome, but taken together, they make working with

EmuFuzzer prohibitively difficult. Moreover, we would eventually like to use the validator not

only for validating TSL specifications but also for validating interpretations, and the on-demand

concretization-based EmuFuzzer architecture is not well suited for such a purpose, because

implementing the concretization function is generally much harder than implementing the

abstraction function. We have therefore opted to design our own validator architecture rather

than one based on EmuFuzzer.

10.2.2 GrammaTech’s validator

Our design specifies that the validator will operate on test programs which may be arbitrary

executables. It will have, at a minimum, the following capabilities:

 Some standard debugging capabilities, in particular the ability to single-step a test

program one instruction at a time.

c0 Initial Processor State

c1 Final Processor State

Initial Abstract State: a0

 a1 a1'

Final Abstract State:

Abstraction

Abstraction

Abstract interpretation

of HW instruction

Actual HW execution

of HW instruction

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

78

 The ability to set write-protection (and possibly read protection) on pages in a test

program's memory space.

 The ability to handle write protection (and possibly read protection) faults from a test

program.

 The ability to emulate instructions of a test program, using look-through semantics.

Finally, since it is infeasible to exercise all the possible behaviors of the processor in our test

programs, an important aspect of the validator will be choosing inputs to the emulator that will

be most likely to reveal bugs in the original TSL specification. We are interested both in testing

arbitrary programs to expose bugs in the specification that would be realistically encountered,

and in broad-coverage testing of individual instructions. Our separate work on concolic testing

may be of use for the latter.

An important aspect of our validator is that it is capable of directly checking the actual machine

code program against an interpretation of the program – it is not an emulation of software. As we

implemented it, the validator uses a memory protection scheme and the debugger API to single

step through a process, capture its state modifications, and then compare the results obtained on

the actual machine to those obtained by the emulator. This allows a TSL definition of ―concrete

CPU semantics‖ to be checked directly against a real CPU, at least for the particular sets of input

memory and register states that are tested.

Furthermore, by exploiting the mathematical properties of ―Galois Connections‖, the validator

also provides a mechanism for validating abstract interpretations. By capturing the concrete state

of executing a real program on a real CPU, and applying an ―alpha function‖ to map its physical

state into an abstract domain, the validator provides a simple, effective, and cheap mechanism

for verifying the soundness of an analysis implementation. Finally, the validator supports two

modes of operation:

1. ―Normal‖ mode, which allows a TSL specification to be tested against arbitrary, real

world programs.

2. ―Fuzz mode‖, which supports fuzz testing (by executing random instructions over

random data).

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

79

10.2.3 Validator Architecture

TSL Validator Target process

libdebughelp.so

captured process state

eax = 1
ebx = 0xdeadbeef
ecx = 0xBAADF00D
...

Posix Shared Memory

Shared Page

Random Page
TSL Emulator

proc file system

ptrace

The TSL Validator is composed of 3 main components:

1. A debugger process (the validator)

2. A shared debugger helper library (libdebughelp.so)

3. Posix shared memory segments

10.2.3.1 Debugger Process

The debugger process uses ―ptrace‖ and the /proc file system to control (and interrogate) the

―test process‖ running on the physical CPU. It also instantiates a ―TSL emulator‖, which it single

steps in parallel with the debugged target process. The emulator utilizes a ―look through

semantics‖ for both register and memory state. That is, reads to unmodified registers and

memory addresses are passed through to the underlying process, whereas writes are written to

internal emulator variables. When testing an abstract interpretation the ―alpha function‖ is

applied on each ―look through‖, thus providing the ability to efficiently model a process‘s entire

4 GB address space. To minimize the possibility of ―cascading errors‖ the emulator is ―re-

synchronized‖ (the emulator state is flushed) to the physical CPU state after every single-step.

10.2.3.2 Memory Protection

Writes made by the emulator are detected by simply iterating over its internal data structures.

Writes made by the target process are detected using a memory-protection scheme. The debugger

write protects all pages in the test process, intercepts any segmentation faults, captures the pre-

write values of any faulted pages, re-enables write permissions (if applicable), and then re-issues

the faulting instruction. After each instruction executes, the modifications recorded by the

emulator are then applied on top of the cached pre-written pages to produce ―candidate pages‖.

The ―candidate pages‖ are then compared directly against the ―post write pages‖ in the physical

process. Any deltas imply the presence of a bug in the emulator. A similar technique is used for

comparing register states.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

80

+

Pre-write Page Emulator writes

=

Candidate Page

diff

post-write-pageCandidate Page

10.2.3.3 Libdebughelp.so

The TSL validator is designed to support arbitrary programs, including programs that have no

knowledge of the validator. Accomplishing that requires some care, however. The Linux System

call interface does not provide any mechanism for a process to change the memory protections of

an external process. Our goal for the validator is that it should ―just work‖, and not require any

kernel modifications. This implies that all code to enable and disable memory protection must be

performed inside the target process via explicit calls to ―mprotect‖.

In order to correctly validate a ―concrete CPU semantics‖, the validator must detect ALL writes

made to a process‘s memory, including its stack space. That introduces the additional burden that

any code for manipulating a process‘s write protection must not perturb its stack space (so that it

can be run when the stack is read-only). Unfortunately that precludes use of a normal functional

call interface.

To get around this, the debugger uses a shared library (libdebughelp.so) to facilitate

communication with the target process. It is dynamically injected into the test program using the

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

81

―LD_PRELOAD‖ environment variable. The Linux dynamic linker reads that variable and

automatically ―pre loads‖ any shared libraries it specifies into the process before transferring

control to its entry point. The shared library includes an ―elf constructor‖ that automatically

maps a read-only shared page into the target process‘s address space (which is also mapped as

read-write in the debugger process). The library also defines several hand-written assembly

language routines that are carefully crafted to not perturb the target‘s stack. The debugger

supplies arguments to those procedures by writing to the shared memory page, and transfers

control to it using the ―ptrace‖ api. Control is passed back to the debugger using the debugger

interrupt (―int 3‖). This provides a simple method for executing code in the target process

without the complexities of dynamic code injection. It can also be used to run some operations

(like write protection) ―en masse‖, minimizing communication overhead (context switches).

10.2.4 Fuzz Testing

The TSL Validator also supports ―fuzz testing‖. In fuzz mode, it supports specially crafted fuzz

tests containing randomly generated instructions and supplies them with random inputs. Fuzz

testing provides a simple automated means of generating interesting test cases for exercising

CPU semantics. Unlike normal mode the goal of fuzz mode is not to preserve the exact

semantics of a real program. Instead, the debugger tries, in earnest, to suppress all faults

generated by the target.

Randomly generated programs, accessing random data, will read and write to random areas of a

process‘s address space. Statistically, there is an extremely low likelihood that those addresses

will be pre-mapped into the process
15

. In fuzz mode the debugger process compensates for this

by intercepting those segmentation faults, generating pages of random data, and mapping them

into the appropriate location in the target process.

Also, special care is needed to recover from execution of random instructions. It is generally

desirable (for performance reasons) to execute multiple fuzz tests within a single process.

However, random instructions that jump into random locations containing random data are

inherently chaotic. To recover from this, the debugger must know the bounds of a given fuzz

test. It needs to identify when the end of a fuzz test is reached, and it needs to know where the

instruction pointer should be placed after a test to enable the next test to run. Furthermore any

side effects of executing a fuzz test must be undone to prevent one test from corrupting others.

Finally, random instructions may generate faults that would normally cause a process to

terminate (like a divide by 0).

When run in fuzz mode, the validator handles those conditions. Fuzz tests employ a hand

shaking protocol that communicates test scope and recovery information to the debugger. The

15 Anecdotally, we observed about 28 4K pages mapped into the process for one small fuzz test. Given a uniformly

distributed random 32 bit address, there is a probability of 99.997 % that any instruction accepting indirect operands

would generate a segmentation fault.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

82

debugger captures a process‘s state
16

 before a test scope is entered, and restores it once a test

completes. Finally, any faults generated within a test scope are suppressed by the debugger.

10.2.5 Tests

We ran several tests using this validator design, the results of which are shown in section 10.3

below. Our tests included 2 ―real programs‖ (―Hello World‖, and a simple program that calls

―exit(0)‖) and random fuzz tests for 10 categories of x86 instructions. We have excluded
17

 from

testing all non-deterministic instructions (such as those for accessing CPU counters), user mode

instructions used only for interacting with an operating system, all privileged and real-mode

instructions, all floating point instructions, all SIMD instructions, all ―safer mode / VMX‖

extensions, and the ―16 bit address size‖ forms of all instructions. The instruction categories

presented in the results correspond, roughly, to the groupings used in the ―Intel Opcode Map‖.

There are also an additional 11 categories of instructions we do plan on testing that have not yet

been implemented.

10.2.6 Limitations

There are a few limitations to our fuzz testing approach. By default, Linux does not make the

entire virtual address space available for use in user mode processes. In particular, a typical 32

bit x86 Linux Kernel will reserve the lower 1 GB of virtual addresses for its own use. That,

unfortunately, has the effect of decreasing our ―signal to noise ratio (SNR)‖ by up to
18

 25%. To

get around this we ran our tests as a 32-bit process on a 64-bit Linux system. For 32-bit

processes on 64-bit Linux, the ―reserved virtual address space‖ is only 64K, which for our

purpose is effectively 0 (it results in an SNR degradation of about 0.002%). It is also possible to

get similar results on a 32-bit system by using a specially configured kernel (with the

HIGHMEM4G option enabled). We have not investigated the impact of these limitations on

testing 64-bit processes, but they likely will require some changes to our test case generator.

16 Memory changes are captured lazily, as updates occur.
17 The exclusions were made because the corresponding functionality has not yet been implemented in our TSL
specification.
18 SNR: The ratio of tests for which we can measure results. The actual degradation (across our entire test suite)
depends on the percentage of test cases that reference indirect operands (or are jumps) so in practice the real
level of noise will be strictly less than 25%.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

83

10.3 Experimental Results

Test
Total
Instructions

Total Failures Failure Rate Unique Bug Count

exit(0) 1352 13 0.962% 2

"Hello world" 1337 75 5.610% ?

Nullary Fuzz-Tests 30 3 10.000% 819

Group 1 Fuzz-Tests 176 5 2.841% ?

Group 2 Fuzz Tests 144 75 52.083% 26

Group 3 Fuzz Tests 63 18 28.571% 3

Group 4 & 5 Fuzz
Tests 12 0 0.000% 0

Group 8 Fuzz Tests 40 10 25.000% 3220

Group 9 Fuzz Tests 4 4 100.000% 1

“Group P” Fuzz Tests 35 11 31.429% ?

“Group M” Fuzz
Tests 99 11 11.111% ?

Table 1. Fuzz testing results

The table above summarizes the tests performed. We did not have time during the contract to

determine the root cause all of the failures. In some cases a single problem manifested in many

locations; in others a single poorly implemented semantic interpretation of an instruction had

multiple problems. What is clear is that hand-generated semantic interpretations are as error-

prone as any other computer-related endeavor – production of software, writing of tests, hand-

review of source code, etc. Every artifact of this kind should have a mechanism for testing it and

for maintaining its accuracy. With this proof of concept we now have a means to validate

emulated interpretations as well.

10.4 Abstract Analysis

During the last month of the contract we focused on extending our test infrastructure to support

abstract analyses in addition to concrete CPU semantics. This required several tasks:

1. Generalization of the test infrastructure.

2. Modifications to our analysis code to make it testable.

3. Instantiation of our ―Simple VSA Analysis‖ within the validator.

Each task is described below.

19 Some tests uncovered multiple bugs.
20 Some tests uncovered multiple bugs.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

84

10.5 Test Infrastructure

To support testing of abstract analysis we generalized our test infrastructure. This involved

separating the ―analysis neutral‖ and ―analysis specific
21

‖ portions of our emulator loop, and

factoring the analysis specific portions behind a common interface. The interface is shown in the

figure below.

10.6 Testability

To support testing of abstract analysis we had to make some modifications to improve their

testability. TSL concrete CPU specifications represent registers, memory, and control flags using

maps from memory addresses, register names, and cpu control flags to values. When a TSL

specification is re-instantiated with an abstract domain, its concrete maps are replaced with

abstract maps that also define additional operations needed during abstract interpretation. To

support ―look through‖ semantics for Simple VSA (Value Set Analysis), we had to add hooks (or

fallback functors) to each of its abstract maps. Unlike the concrete case, this also required

modifying their meet and join operators to properly handle partially specified maps
22

.

10.7 Simple Value Set Analysis

Simple VSA is a simplified form of GrammaTech‘s Value Set Analysis technology. It represents

memory addresses and registers as a series of ―strided intervals‖ (or ―reduced interval

congruencies‖). A strided interval denotes a range of numbers [l,u] along with a ―stride‖ s. For

example, the strided interval ([0,6], 3) would include the numbers 0, 3, and 6 whereas the strided

interval ([0, 10], 1) would include all of the integers from 0 to 10, inclusive. It also defines an

abstract join operator that provides an over-approximation of set-union between two intervals,

21 We define our support for “concrete CPU specifications” as a “concrete analysis”
22 A map with a “functor” attached is “partially specified”. Some of its values are stored explicitly in a dictionary,
while others are retrieved on demand from the functor. Conceptually, a map contains all the values that its
fallback functor is capable of returning, even if those elements are not explicitly represented in the map. To
maintain the mathematical properties necessary for sound analysis results, the implementations of “meet” and
“join” on maps with “fallback functors” must take that conceptual view into account.

class IAnalysis

{

 friend class ref_ptr<IAnalysis>;

public:

 IAnalysis();

 virtual ~IAnalysis();

 virtual ref_ptr<IState> initialize(Debugger * pDebugger) = 0;

 virtual ref_ptr<IState> single_step(ref_ptr<IState> pState, Debugger * pDebugger) = 0;

 virtual void compare_state(ref_ptr<IState> pState, Debugger * pDebugger) = 0;

 virtual ref_ptr<IState> sync_with_cpu(ref_ptr<IState> pState) = 0;

protected:

 //count for ref_ptr

 unsigned int count;

};

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

85

which is used to join intervals found on converging code paths. Finally, it also places a K-bound

on the cardinality of the interval to ensure proper termination of the analysis
23

. This provides

some of the functionality of ―full VSA‖, while operating on substantially simpler abstractions.

10.8 Simple VSA Results

There were insufficient resources in the one-year project to complete the analysis of the results

of the VSA validation. The validation was run on some of our test programs and did uncover

additional bugs in the implementations of abstraction and representation functions.

23 That is, if the result of joining 2 intervals would yield an interval that described a set with more than K elements,
a value of “TOP” is returned instead.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

86

11 Using the cloud to find malicious code

11.1 Introduction

―Cloud computing‖ has become a technical buzz-word in the last decade or so. It connotes an

amorphous cloud of computing resources that can solve whatever computational need you may

have. In fact, the concept of computing as a utility dates to the 1960‘s [88], a time when

computers were expensive and computing resources were scarce. Time-sharing of computers was

common-place, with users interacting only with input and output devices and not needing to own

or manage or even know the location of the computer that did their work.

The advent of personal computers allowed individuals to have, cost-effectively, whatever

computing power they needed under their own personal control and at their own convenience.

However, most people use their computers for routine tasks – primarily email and document

processing, though with increasing amounts of entertainment-oriented applications. Hence there

is a great deal of unused computational power, left idle for the sake of convenience.

In enterprise computing, this unused computational power was seen as an opportunity for cost

savings. By having ―thin clients‖ at a business users‘ desks and the computation performed on

centralized networks of servers, the cost of desktop units could be reduced and administration

and maintenance of machines simplified.

The growth of high-bandwidth, always-connected internet connections across the country and the

world has created the opportunity for new kinds of shared computing. Three in particular have

gained prominence. First is the realization of computing as a utility [80]. Companies like

Amazon and Microsoft provide access to computing services for a fee. Clients can rent time,

memory and disk space as they use it; clients can rapidly be provisioned with additional facilities

as they need them and ramp down when the need has passed. On an individual basis, the utility

can provide applications for email and word-processing. Individuals need not even purchase

software for their lightweight client machines – only an internet connection is needed. For large

scale cluster computations, facilities like MPI can be included in the installation image and

cluster programs can be run with little or no modification. In this type of shared computing, the

computing resources used by individuals or business users are simply moved from their own

desktops to a utility somewhere across the internet. But the amount or type of computation the

users perform does not change.

In a similar, but non-commercial model, physically distributed grids of computational resources

are made available by institutions such as the NSF- supported Terragrid and CERN‘s glite; these

provide computing resources on a vast scale for tasks from all of the collaborators by utilizing

dedicated resources at every institution [81-84]. Programs prepared for cluster computing can

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

87

usually be transitioned by just relinking and producing a small set of scripts that describe the

computational parameters.

A third type of shared computing results from making (usually donated) spare computational

cycles on personal machines available to some larger project. In this case the project is typically

a very large project with pieces of work that can be farmed out and the results collected back

incrementally. Computing as a public utility comes with service guarantees and an infrastructure

that guarantees privacy and security; computing with donated cycles has no such guarantees:

resources may become available or unavailable without notice; security and privacy are not

assured. However, research work has developed techniques to secure computations in a volunteer

grid against accidental flaws and against intentional theft or sabotage [83]; the most popular

cloud platform has built in facilities to support the devised methods [3, 7, 8, 86].

Mixed mode designs that use dedicated grids for some computations and volunteer computing

for others have also been successfully deployed. Typically these involve a centralized job

dispatch mechanism and some method for the user to tag subprocesses according to whether they

are suitable for volunteer computing or not [85, 89].

Since the challenges associated with computing using donated cycles are much higher, including

an estimated 3 work months of preparation time for new projects [3, 86], we will focus on this

type of distributed computing in the remainder of this discussion. The application we have in

mind is static analysis for finding malicious code.

11.2 Benefits of distributed computation

The benefits of highly distributed computation are well-known.

 A large problem can be tackled in a reasonable time, if it is sufficiently distributable.

 If the computational resources are donated, the cost is kept comparatively low [90, 91].

 Even if a public utility is used, the rate of progress and the amount of resources used can

be varied.

Our application is the finding of bugs and malicious code within a large body of software using

static analysis. Current static analysis tools use heuristics that miss bugs and report false

positives in order to complete analyses in a reasonable time. Having orders of magnitude more

computation available can increase the depth and precision of the analysis. We also see from our

own studies in this project that it is possible to produce analysis results with low overheads and

only infrequent communication. So, our application is, at least in principle, a good candidate for

volunteer cloud computation.

There is also a potential intangible, social benefit to cloud computing. Volunteer participation in

a larger project can encourage interest in the larger project; conversely, a well-positioned (or

well-marketed) project can excite interest that leads people to volunteer resources. For example,

participation in SETI@home or in research projects that study protein folding on a large

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

88

computational scale or in the solution of large-scale mathematical problems is enhanced by the

participants‘ interest in the social or scientific good of the project. In the right circumstances or

with the right encouragement, the citizens of our country might be encouraged to participate in a

large scale project that was important to the country‘s security – finding malicious code.

11.3 Requirements

However, not every task can be readily distributed to volunteer resources. The task must be able

to be divided up into manageable subtasks and those subtasks must be able to be completed

independently. There must be a high degree of intrinsic task parallelism [3].

Second, the overall computation must be robust against specific subtasks failing or being

externally aborted. Tasks must not only be computed independently, but must be able to be

completed in somewhat arbitrary order.

Third, the communication cost must be reasonably low. The task at hand must not require huge

amounts of input data to be shipped to a volunteer computer, nor must the results consist of a

large amount of data to be sent back to the controlling process. Large amounts of communication

would be a bottleneck at the controller and would tax the volunteered computer. In addition it

would diminish the value of distributed computing since the costs of communication would be

larger compared to the costs of computation; ideally in parallel computation, communication

costs are kept quite small.

Fourth, the subtasks must be tailored so as to not overly tax or monopolize the volunteered

computer. In some situations, the computer on which the subtask is running may indeed be

wholly devoted to the task; for example, someone may volunteer their computer for some pro

bono computation at night, when the computer is not being otherwise used at all. However, in

other circumstances, the donated cycles may be used for the distributed task concurrently with

the user engaging in normal but not heavy use. In this case the externally supplied subtask must

be content with running at a low priority, so as not to affect responsiveness to the rightful owner.

Finally, the external subtask must acknowledge and interact well with the security barriers on the

local machine. After all, the external task is at one level no different than a bot that uses the local

computer‘s resources for its own purposes, except that the bot is acting without permission. The

security implications are discussed in more detail below.

Application to concolic execution

We observed in Section 7 that concolic execution is particularly amenable to distributed

processing. In this application, a program executes a random input. The concolic engine observes

a trace of that execution, notes which branches are taken during the execution, and then uses a

constraint solver to determine what inputs would cause the execution to have taken other branch

choices. The process is then repeated with these new inputs. The end result is a large test suite

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

89

that provides high coverage of the subject program; it is particularly good at finding tests for

rarely used (and potentially malicious) code branches.

The natural unit of work – the subtask – is the execution and analysis of a single input to produce

other inputs. It requires the resources to execute a single run of the subject program and then to

analyze that execution to produce new inputs. In fact those two steps could be separated and

assigned to two different machines; the communication needed between them is just the trace of

the execution.

All a subtask needs to begin work is the specific input to be analyzed. That includes the

command-line arguments, any files that are read by the program, the data that flows to the

program along any communication channels, including user input, and the sequence of events

generated by a GUI. This is not typically a large amount of data. The response back to the

controller is a similar set of data for each new input identified.

If a newly volunteered computer becomes available, all it needs to do is to accept work packets

from the controlling process (along with installing the analysis program); if a volunteer suddenly

becomes unavailable, with its work incomplete, the controller can simply restart that subtask

with a new volunteer.

11.4 Technical and Social Challenges

The open nature of a system of computing using donated cycles requires a number of security

issues and operational pitfalls to be addressed. In this section we discuss the technical and social

challenges to effective use of cloud computing for malicious code discovery.

As mentioned above, the DoD Defense Science Board Task Force issued a report on ―Mission

Impact of Foreign Influence on DoD Software.‖ The summary findings of the report present a

stark view of the critical importance and incredible difficulty of malware detection. From a

theoretical point of view, we believe the question, ―does this software have a behavior that

indicates malicious intent?‖ is actually impossible to answer. Any (interesting) question about

software behavior quickly runs afoul of Rice‘s Theorem and is undecidable. Malice is often

dependent on context. For example, a program that broadcasts one‘s current GPS coordinates

might be a cool new app for the iPhone; the same behavior on a weapon system is almost

certainly treasonous. Finally, simply defining intent is likely to lead to a philosophical morass.

However, more importantly, we agree with the Defense Science Board that mitigating steps can

and should be taken. In particular, we believe that recent breakthroughs in machine-code analysis

will prove to have strategic importance. For a long time, machine-code analysis was effectively

limited to dynamic techniques that work by observing a program as it executes. Dynamic

techniques can give precise information for the observed executions — but only for the observed

executions. Recently, meaningful static analysis of machine code has become viable. Static

analysis performs an abstract execution to determine properties that hold for all possible runs of

a program. In regards to machine-code analysis, there are novel static-analysis techniques for

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

90

recovering an Intermediate Representation (IR) that captures a program‘s semantics [13, 14, 59].

The recovered IRs have a plethora of uses [12, 16], including (but not limited to) checking for

behaviors that indicate malicious intent [1, 52].

We believe that the next breakthrough in machine-code analysis can be found by leveraging the

power of online communities. Dynamic and hybrid dynamic-static analyses can benefit by

multiplying the number of executions that are available for analysis. Static analysis can benefit

by multiplying the computational power that is available to the analysis. However, building an

effective computational community presents its own set of challenges. The remainder of this

section summarizes some of these challenges.

11.4.1 Algorithmic Requirements

The first challenge is to adapt the analysis algorithms for distributed computation (across the

community). For many analyses, this is straightforward. For example, for some dynamic

algorithms, it may be as simple as partitioning a program‘s input space and assigning each

community member to analyze the program when run on a different portion of the input space.

On the opposite end of the spectrum, many analysis problems are thought to be difficult to

parallelize efficiently. For example, it is believed that (unless P=NC) there are limitations on

creating algorithms for interprocedural dataflow analysis that are (a) parallel, (b) efficient (in

utility of the parallel computations), and (c) precise [76]. However, even for these analyses, we

should not lose hope of benefiting from a computational community. For example, a community

might allow for a sequential algorithm to be applied to more individual problems. Each

community member might perform the entire (sequential) analysis of a single program, but

together the community is able to analyze the entire suite of programs used on a given platform.

Furthermore, precise program analysis is often theoretically impossible but this has not stopped

the development of useful analyses. Usually, the analysis succeeds by sacrificing precision.

Similarly, by using abstractions and sacrificing (perfect) precision, it may be possible to develop

static analyses that are parallel, efficient, and usually precise in practice.

One reason for optimism is the success of demand-driven analyses [39, 51, 73, 74]. A demand-

driven analysis computes answers only at specific points of interest in a program. For example,

rather than computing the possible points-to relations for all variables in a program, a demand-

driven points-to analysis might focus on computing only the points-to relations for the variables

used in the innermost loops (that are targeted for the heaviest optimization). In theory, a demand-

driven analysis may have to compute the complete solution just to get a point solution. However,

in some cases demand-driven analyses — even when executed for every conceivable demand —

can be faster than traditional exhaustive analyses [23]. (This is because an exhaustive analysis

may waste resources propagating information where it cannot be used.) In other cases, demand

analyses are not as competitive [74]. Nevertheless, the results of [23] suggest that one possible

approach to leveraging computational communities is to assign each community member to run a

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

91

demand-driven algorithm on a different set of (related) demands, and then assemble the

individual solutions into a complete solution.

11.4.2 Security Concerns

Cloud computing raises security concerns on a number of levels: safety of the individual

community members, integrity of distributed computations, protection from espionage, and

trustworthiness of the borrower.

11.4.2.1 Safety of Community Members

As in the Hippocratic Oath, the first maxim of any community-based approach should be ―do no

harm.‖ Participation in an (online, computational) community should be safe. At a minimum,

this requires guarantees that:

 The stability of a participant‘s system is not affected.

 The participant is not exposed to new attack vectors.

 The participant controls the cost of participation. (I.e., the participant sets the allocation

of her resources in the community effort.)

 The participant‘s privacy is never compromised.

In many cases, these guarantees are easy to provide. For example, if participants are called upon

to run partial computations, then those computations should be ―sandboxed,‖ or run in a virtual

environment that isolates the computation. Proper sandboxing can ensure that a program cannot

make unauthorized access to system resources and that any fallout from running a faulty program

is contained to the sandbox. (There are many effective techniques for sandboxing a program,

such as using a hypervisor or using process shepherding [53], e.g., using GrammaTech‘s

software dynamic translator [11], gtSDT.)

Sandboxing helps to maintain the stability of the participant‘s system. It may also be important

for ensuring that participants are not exposed to new attack vectors. One possible approach to

identifying malicious code is to use dynamic analysis (such as ―smart fuzzing‖) to attempt to

trigger a malicious behavior. This technique becomes much more powerful if an entire

computational community is running the dynamic analysis — but it comes with an obvious risk.

If the analysis succeeds (malicious code is triggered), then one or more community members will

be running malicious code on their systems. By running the dynamic analysis (and any malicious

code) in a sandbox, we can guarantee that no harm is done.

In some cases, providing the guarantees listed above will require additional research. In

particular, it is difficult to guarantee privacy when gathering feedback from community

members. In general, the feedback gathered from participants would be related to the execution

of (specific subject) programs on the participants‘ machines. Just the fact that a participant is

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

92

using a particular program with a particular frequency may be sensitive information. Worse,

facts about a program‘s execution may imply facts about sensitive data that the program was

examining or manipulating. This problem is magnified if the program was running on classified

data; any feedback about an execution on classified data may have to share the same

classification.

In some cases, concerns about the loss of privacy can be mitigated by using an anonymizing Tor

network to submit feedback data. However, anonymous submission of feedback does not help if

the feedback data is classified or somehow identifies the submitter. For some feedback-based

techniques, it may be possible to prove that the feedback data does not reveal any sensitive

information. The Cooperative Bug Isolation project samples feedback data in order to decrease

the flow of information about each execution and lessen the risk of privacy leaks [60].

In the end, concerns about safety (such as the leaking of private information) may restrict

participation in a community (e.g., by members of the intelligence community). We expect

community-based approaches that restrict participation to still be beneficial — even to those

members who do not participate. (Solutions found by community members benefit everyone.)

11.4.2.2 Masquerading testers

Besides being protected from harm, a person donating cycles must trust that the organization

using the donated cycles is well-behaved and honest in its intentions. Given the difficulty of

knowing who is whom on the internet, such knowledge and trust is a challenge. A computational

(or any) community is built on the social fabric that the result of donated resources is something

worthwhile. The donor must be able to obtain confidence that such is the case and have

transparency into the results of the research.

11.4.2.3 Integrity of Distributed Computations

In addition to providing protection to its members, a community-based effort may also require

protection from its members. For example, a malicious community volunteer might try to subvert

a community-wide computation by submitting false results, or slow progress by requesting work

assignments but never fulfilling them.

Fortunately, the integrity of a distributed computation can often be protected with simple

techniques [83], including:

 Replication of work assignments. Each work assignment should be randomly assigned

and replicated among multiple community members. This makes it much more difficult

for a malicious participant to submit false results without being detected.

 Use of CAPTCHAs to screen membership in a community. CAPTCHAs are a common

technique across the web for distinguishing ‗bots‘ from humans. Community-based

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

93

approaches should leverage CAPTCHAs, just as online services do. For example, use of

CAPTCHAs can prevent a botnet from disrupting a community-based effort.

 Random audits of member work. Another way to identify falsified results is to randomly

check a small percentage of results by reproducing the result on a trusted machine.

 Consensus of feedback. Feedback-based approaches might benefit by not trusting any

datum until it has been submitted by multiple community members. As with replication

of work assignments, this helps to protect against false reports.

The above approaches are fairly generic across all community-based techniques. For specific

community-based analyses, it might be possible to take additional precautions. For example, it is

often cheaper to check if a result is correct than it is to compute the result from scratch.

11.4.2.4 Protection from Espionage

Public research often faces the danger that the research will be used for nefarious purposes. This

has often been the case in computer science. Fuzz testing was originally conceived as a technique

for improving software development [4, 65]. Today, ―fuzzing‖ is a popular technique among

hackers for finding exploitable security vulnerabilities.

Community-based analyses face a similar threat that they could be appropriated and misused. In

particular, community-based efforts could be subject to a form of ―espionage‖ where a ―spy‖

joins the community to gain access to the community‘s software. The spy could then create his

own community that competes with the original community (e.g., to find malicious backdoors or

software vulnerabilities). If the spy uses botnets to create his community, then he might gain a

computational advantage over a community that relies solely on volunteers. Another danger of

espionage is that by examining the analysis algorithm, the spy might be able to construct

malicious code that will escape detection.

The espionage can also take the form of a man-in-the-middle attack. The spy might not directly

participate in the community effort, but simply observe the traffic that occurs, obtaining

information about what tasks are being performed, what the results of analyses are, and even

who is participating in those tasks.

When possible, steps should be taken to minimize susceptibility to espionage. For example, in

many distributed computations, there is a centralized component that (a) distributes work parcels

and (b) assembles distributed results. The centralized component is much harder to steal. If the

algorithm is designed so that the centralized controller is also hard to implement or to reverse-

engineer, then the threat of espionage is greatly reduced.

11.4.3 Community Creation and Coherence

As described above, not all of the hurdles in this project involve shortcomings in technology.

Some of the challenges are also social or political. In particular, community-based analyses are

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

94

effective in direct proportion to the size of the participating community. This means that building

and maintaining a large community of volunteers is important to the success of any community-

based analysis.

Fortunately, there are some reasons to be optimistic that this challenge is surmountable. There

already exist online communities that have similar participation requirements (although we are

not aware of any that address the problems we are investigating). The BOINC project [3] at UC

Berkeley and the World Community Grid [5] from IBM both provide a centralized location

where volunteers can join computational communities of their choice. This means that by

developing our analyses with the appropriate APIs, we will be able to leverage existing efforts to

recruit and organize computational communities. Furthermore, we believe that computer security

is a problem that affects everyone and we should be able to find volunteers. Still, there will be

questions that need to be addressed. For example, which programs get analyzed? With what

priority? Ensuring that these questions are answered fairly may be important for maintaining

community coherence.

Internet denizens are also becoming more used to participating by providing feedback about their

program behavior. Larus reports that the Dr. Watson tool receives feedback from approximately

42% of users [55]. However, it is still important to make it easy for volunteers to sign up and

participate. For example, all that Dr. Watson requires of a participant is a few mouse clicks.

11.5 Conclusions

There‘s an old adage in computer science that ―if brute force doesn‘t solve your problems, then

you aren‘t using enough.‖ For the problem of identifying malicious code, there have been

promising techniques — static model checking, concolic execution, etc. — but they have all

suffered from scalability problems. They did not have enough ―brute force‖ to solve realistic

problems. One of the easiest ways to leverage a community is to use the spare computational

cycles of the community members: the community provides the necessary brute force.

There are many advantages to approaches that build and leverage computational communities. In

particular, it is relatively easy to guarantee the safety of community members, especially with

regards to privacy issues. Similarly, it is relatively easy to ensure the integrity of the distributed

computation. On the other hand, computational communities may be vulnerable to espionage, as

described in Section 11.4.2.4.

Computing in the cloud or with donated spare cycles can offer significant computing resources to

a problem such as finding useful test cases using concolic execution. Concolic execution is

admirably suited to using distributed resources. However, the security concerns in doing so may

limit the use of such widely distributed processing to studying programs that are publicly

available anyway, not those in which there is high proprietary or classified value. The same

distributed technique can also be used on a captive set of computer servers, with the same

advantages and more control over the available computational cycles and over security.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

95

Section III: Concluding Material

12 Related Research
This section describes related work in three areas. We begin with a discussion of related work in

the areas of static and dynamic analysis. Next, we describe work on mining temporal

specifications. Finally, we discuss some implementations of the paradigms of passive feedback

and donation of spare computation cycles.

12.1 Static and Dynamic Analysis
Both static and dynamic approaches have emerged to address the problem of detecting security

vulnerabilities in software. Static approaches include ITS4 from Cigital (formerly Reliable

Software Technologies) [77]. ITS4 uses surface-level syntactic information to detect constructs

that can lead to a wide range of potential problems including buffer overruns and file-based race

conditions. The tool does not attempt to do any static-semantic analysis beyond a coarse

approximation to the call graph. RATS and Flawfinder use similar techniques to ITS4. Another

static approach is that of Wagner et al. [78].

Dynamic approaches focus on detecting attacks in progress and preventing them from doing

harm. StackGuard [36], and a similar technology in Microsoft's C/C++ compiler for Visual

Studio .NET prevent buffer-overflow attacks from succeeding by detecting or preventing damage

to the stack at runtime. The same research group that developed StackGuard, also developed

RaceGuard [35], which is a kernel-level patch that monitors system calls and aborts the program

when it detects that a race-condition attack is in progress. Immunix's FormatGuard [34] provides

a safe standard library to compile against.

Another dynamic approach used for detection of anomalous or malicious code has been intrusion

detection systems (IDSs) [94]. An ―intrusion‖ is detected by observing key behavior of an

application, like the system calls made by it. Any deviation from the expected would then be

raised as an intrusion.

Approaches from academia that have analyzed source code for (presumably unintentional)

malicious code are Wagner's BOON (which inspired GrammaTech's buffer overrun detector) and

Engler's ARCHER for detecting buffer overrun vulnerabilities, RacerX [41] and Dilger's tool for

finding race conditions [21], Chen's MOPS for finding security problems like misuse of the

'seteuid' function, and extended static checking [27] for finding a range of security problems.

Detection of intentionally malicious code in source or binary code has been tackled via data

mining [71] and pattern matching via static analysis [29].

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

96

12.2 Mining Temporal Specifications
In this section, we give examples of two approaches to mining temporal specifications, such as

interface specifications. The first observes dynamic traces of program execution, while the

second performs static analysis of the subject program.

12.2.1 Mining Dynamic Information

Originally these techniques were used to extract models from traces of function calls for the

purposes of documentation or maintenance, as described by Cook and Wolf [31], El-Ramly et

al. [40], Mariani et al. [63], and Ernst [44]. More recently, work has been done on mining API

call traces to derive specifications that describe how the API should be used correctly. This

specification is then used as input to a program verifier. Ammons et al. describe the

technique [6], and Yang and Evans extend the approach to include any temporal property [79].

This approach has been extended further to cover mining of other dynamic program properties.

Bowring et al. describe its use on execution branches and paths [22].

12.2.2 Mining Static Information

One of the first applications of machine learning for the purpose of finding software flaws is due

to Engler et al. [43]. In their approach, a system learns simple static properties that hold most of

the time, and alerts the user to exceptions. This is based on the observation that many bugs are

correlated with anomalies. For example, if a program does things one way 99% of the time, yet

slightly differently in the remaining 1%, then the outliers are anomalies and are statistically

likely to contain flaws. Properties learned by the system fit templates such as ―function a must be

paired with function b‖. This system has been successful at finding large numbers of flaws in

operating-system software; it has been transitioned to the Coverity product line.

12.3 Passive Feedback for Cooperative Bug Isolation (CBI)
The CBI project [57, 58] aims to improve the quality of software by means of the passive-

feedback paradigm. The project distributes versions of a few popular open-source applications

that were instrumented to collect a variety of predicates (or events) that could help in isolating

the cause of a crash. An example predicate is the information that the return value of a function

is negative. Each execution of the instrumented program reports (sampled) counts of the number

of times that each predicate was true during the execution, as well as the exit status of the

execution. CBI uses statistical machine-learning techniques to infer likely causes of a crash.

Intuitively, the algorithm looks for sets of predicates that co-exist in failing runs but not in

successful ones. These sets of predicates are likely indicators of crash-inducing bugs.

The CBI project is faced with many of the same types of issues that we expect to encounter,

namely concerns of privacy, performance, and adoption. Heavy use of sampling alleviates the

performance overhead, as well as privacy concerns to a large degree.

As mentioned above, a significant challenge to widespread use of CBI is due to the need for

source code during the instrumentation step. Currently, only a small collection of CBI-

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

97

instrumented open-source software packages are available, and only for selected Linux

distributions. Additionally, the use of instrumented binaries makes the presence of CBI

detectable by intruders: a savvy intruder may elude CBI by choosing a different (non-

instrumented) target.

12.4 Efforts to Harness Donated Computation Cycles
BOINC [3, 7, 8] is a software system that enables scientists to tap into the vast computing

resources of personal computers. Individuals can donate their computers‘ resources to one ore

more BOINC projects, with the ability to specify the allocation of the donated resources among

these projects. BOINC originated as an infrastructure to support SETI@home (Search for Extra-

Terrestrial Intelligence) but was later extended to become a generic middleware platform for

volunteer and grid computing. BOINC hosts a number of projects, primarily in the areas of

mathematics, medicine, molecular biology, climatology, and astrophysics.

World Community Grid (WCG) [5] is an effort by IBM Corporation to create the world‘s largest

public computing grid. It grew out of a massively distributed computing grid that was used to

accelerate the search for a cure for smallpox. The success of the smallpox effort led IBM to

launch WCG as a computational framework to benefit a variety of humanitarian research efforts

with high computational requirements. Initially, WCG only supported Windows and relied on a

proprietary distributed computing package (Grid MP from United Devices). To open access to

computational resources that use other platforms, WCG added the support of the BOINC

interface, thus enabling users of computers running Mac OS X and Linux to volunteer cycles.

We are not aware of any program-analysis projects that build upon the BOINC framework.

While that framework may be an appropriate foundation for our work as well, some

particularities of our intended applications may warrant a new effort on the foundation of the

framework. A common theme among many of the current BOINC projects is the fact that they

address problems whose solutions are not likely to benefit any adversary. For instance, it is hard

to imagine a person who can benefit from compromising (or hijacking) the computation of the

N-queens mathematical problem or the search for a cure for smallpox. In the case of program

analysis aimed at identifying malice in software, it is clear (as discussed earlier) that an

adversary can benefit by: (a) preventing an analysis from functioning correctly (e.g., when hiding

a known exploit), and (b) stealing the computed results (e.g., when finding new exploits).

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

98

13 Conclusions and Recommendations

The Safety In Numbers project conducted research related to several aspects of using donated,

distributed resources to assess the quality of software and to find malicious code. The principal

conclusions are enumerated here:

 Using donated resources is a feasible approach to garnering a large computation resource.

However it does have some social and security challenges. The principal technical

challenge is that the task to be performed must be sufficiently parallelizable.

 We assessed whether conventional static analysis could make efficient use of a wide

network of computational capability. We concluded that there is some benefit to applying

more time to an analysis than users typically are willing to wait, but that the benefit is

only modest. To obtain significant benefit from a parallel architecture would require at

minimum a substantial re-architecting of the logical representation of the subject

program.

 By contrast, concolic execution of a subject program in order to find a test suite that gives

a high degree of execution path coverage (and is thus able to find hidden, possibly

malicious, execution paths) is very amenable to distributed and volunteer execution. We

found concolic execution (as implemented in GrammaTech‘s GraCE tool) to be

reasonably scalable with relatively low communication costs. The parallel efficiency is

high and is expected to be higher with larger scale programs. Details of the search

algorithms for finding novel execution paths had unexpected implications for the

efficiency of various parallel execution architectures.

 Finally, we demonstrated that we could adapt the techniques of concolic execution and

random ―fuzz‖ testing to validate logical representations of the semantics of concrete

systems. This is an essential component of developing confidence that the static analysis

tools are operating correctly. We demonstrated this random fuzzing for two problems.

First, applying concolic execution to a machine code program requires a logical

representation of the machine code; our validator was able to check the translation of a

significant subset of the hundreds of x86 instructions, finding bugs in the logic that have

been referred for inspection. Second, we demonstrated a proof of concept that the same

technique can be applied to a more abstract interpretation of the machine semantics as

well.

The research conducted in this project was challenging and provocative; it sparked many more

ideas than could be followed up in the ten-month span of work. Some of those ideas are listed

here.

 The exercise of validating the concrete semantics of machine code instructions

demonstrated the validation technique, but the work remains of understanding the

discrepancies discovered and folding that information into a validated machine

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

99

semantics. The result will be a thoroughly checked semantics of x86 that can be used in a

number of tools.

 Similarly the assessment of the abstract interpretation through fuzzing techniques was a

successful proof of concept that now can be applied to a wider range of abstract

interpretations.

 The experiments in parallelizing concolic execution successfully demonstrated that the

tool could be applied to a moderate scale set of computing resources. No roadblocks in

the architecture are apparent from our testing. There are two steps needed to apply this

technique at a realistic scale. First to further extend the capability of the GraCE engine,

and second to validate the predictions made in this project by applying the architecture

developed here in systems containing hundreds of nodes.

 Concolic execution has shown its promise admirably in a number of research groups.

Consequently it is worth supporting its development past the proof of concept to full-

fledged commercial tool. We will be seeking further contract support to commercialize

this promising technology in a way that encourages widespread use for analyzing

software binaries.

 Our original 3-year proposal proposed using user communities to obtain feedback on

bugs in applications. Such cooperative mechanisms are already used for crash reports

(e.g. Dr. Watson) and for usage reports (e.g. Eclipse); one could also apply this technique

to advantage for test cases and static analysis results.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

100

14 References
 1. Christodorescu,M., Jha,S., Maughan,D., Song,D.X., and Wang,C., eds. Malware Detection. Advances in

Information Security, ed. Jajodia,S. Vol. 27. 2007, Springer: New York City, NY. 312.

 2. Mission Impact of Foreign Influence on DoD Software, 2007, The Defense Science Board.

 3. BOINC: Open-Source Software for Volunteer Computing and Grid Computing, http://boinc.berkeley.edu/.

 4. Software Testing with Holodeck using Fault Injection,

http://www.securityinnovation.com/holodeck/index.shtml.

 5. World Community Grid: Technology Solving Problems, http://www.worldcommunitygrid.org/index.jsp.

 6. Ammons,G., Bodík,R., and Larus,J.R., Mining Specifications. In ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL). 2002. Portland, OR: ACM. pp. 4-16.

 7. Anderson,D.P., BOINC: A System for Public-Resource Computing and Storage. In Workshop on Grid

Computing. 2004. Pittsburg, USA.

 8. Anderson,D.P. and Fedak,G., The Computational and Storage Potential of Volunteer Computing. In

IEEE/ACM International Symposium on Cluster Computing and the Grid. 2006. Singapore.

 9. Anderson,P., Reps,T., and Teitelbaum,T., Design and Implementation of a Fine-Grained Software

Inspection Tool. IEEE Transactions on Software Engineering (TSE), 2003. 29(8): pp. 721-733.

 10. Anonymous, The Folding@Home Project, http://folding.stanford.edu/.

 11. Bala,V., Duesterwald,E., and Banerjia,S., Dynamo: A Transparent Dynamic Optimization System. In ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 2000. Vancouver,

British Columbia, Canada: ACM. pp. 1-12.

 12. Balakrishnan,G., Gruian,R., Reps,T., and Teitelbaum,T., CodeSurfer/x86 -- A Platform for Analyzing x86

Executables. In International Conference on Compiler Construction (CC). 2005. Edinburgh, UK: Springer.

pp. 250-254.

 13. Balakrishnan,G. and Reps,T., Analyzing Memory Accesses in x86 Executables. In International Conference

on Compiler Construction (CC). 2004. Barcelona, Spain: Springer Verlag. pp. 5-23.

 14. Balakrishnan,G. and Reps,T., DIVINE: DIscovering Variables IN Executables. In International Conference

on Verification, Model Checking, and Abstract Interpretation (VMCAI). 2007. Nice, France: Springer. pp.

1-28.

 15. Balakrishnan,G. and Reps,T., Analyzing Stripped Device-Driver Executables. In International Conference

on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). 2008. Budapest, Hungary:

Springer. pp. 124-140.

 16. Balakrishnan,G., Reps,T., Kidd,N., Lal,A., Lim,J., Melski,D., Gruian,R., Yong,S.H., Chen,C.-H., and

Teitelbaum,T., Model Checking x86 Executables with CodeSurfer/x86 and WPDS++, (tool-demonstration

paper). In International Conference on Computer Aided Verification (CAV). 2005. Edinburgh, Scotland:

Springer. pp. 158-163.

 17. Balakrishnan,G., Reps,T., Melski,D., and Teitelbaum,T., WYSINWYX: What You See Is Not What You

eXecute. In IFIP Working Conference on Verified Software: Theories, Tools, Experiments (VSTTE). 2005.

Zurich, Switzerland: Springer.

 18. Ball,T. and Rajamani,S.K., The SLAM Toolkit. In International Conference on Computer Aided

Verification (CAV). 2001. Paris, France: Springer Verlag. pp. 260-264.

 19. Ball,T. and Rajamani,S.K., The Slam Project: Debugging System Software via Static Analysis,

http://research.microsoft.com/slam/papers/popl02.pdf.

 20. Beckman,N.E., Nori,A.V., Rajamani,S.K., and Simmons,R.J., Proofs from Tests. In ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA). 2008. Seattle, WA: ACM. pp. 3-14.

 21. Bishop,M. and Dilger,M., Checking for Race Conditions in File Accesses. Computing Systems, 1996. 2(2):

pp. 131-152.

 22. Bowring,J.F., Harrold,M.J., and Rehg,J.M., Improving the Classification of Software Behaviors using

Ensembles of ControlFlow and DataFlow Classifiers. 2005, College of Computing, Georgia Institute of

Technology, Atlanta, GA GIT-CERCS-05-10.

 23. Bruening,D., Duesterwald,E., and Amarasinghe,S., Design and Implementation of a Dynamic Optimization

Framework for Windows. In ACM Workshop on Feedback-Directed and Dynamic Optimization (FDDO).

2001. Austin, TX.

http://boinc.berkeley.edu/
http://www.securityinnovation.com/holodeck/index.shtml
http://www.worldcommunitygrid.org/index.jsp
http://folding.stanford.edu/
http://research.microsoft.com/slam/papers/popl02.pdf

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

101

 24. Bush,W.R., Pincus,J.D., and Sielaff,D.J., A Static Analyzer for Finding Dynamic Programming Errors.

Software - Practice and Experience (SPE), 2000. 30(7): pp. 775-802.

 25. Chen,H., Dean,D., and Wagner,D., Model Checking One Million Lines of C Code. In Symposium on

Network and Distributed System Security (NDSS). 2004. San Diego, CA: The Internet Society. pp. 171-185.

 26. Chen,H. and Wagner,D., MOPS: An Infrastructure for Examining Security Properties of Software. In ACM

Conference on Computer and Communications Security (CCS). 2002. Washington, DC: ACM. pp. 235-

244.

 27. Chess,B., Improving Computer Security Using Extended Static Checking. In IEEE Symposium on Security

and Privacy. 2002. Oakland, CA: IEEE Computer Society. p. 160.

 28. Choi,J.-D., Lee,K., Loginov,A., O'Callahan,R., Sarkar,V., and Sridharan,M., Efficient and Precise

Datarace Detection for Multithreaded Object-Oriented Programs. In ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI). 2002.

 29. Christodorescu,M. and Jha,S., Static Analysis of Executables to Detect Malicious Patterns. In USENIX

Security Symposium. 2003. Washington, DC: USENIX Association. pp. 169-186.

 30. Clarke,E.M., Fujita,M., Rajan,S.P., Reps,T., Shankar,S., and Teitelbaum,T., Program Slicing for Design

Automation: An Automatic Technique for Speeding-up Hardware Design, Simulation, Testing, and

Verification. In Conference on Correct Hardware Design and Verification Methods (CHARME). 1999. Bad

Herrenalb, Germany: Springer. pp. 298-312.

 31. Cook,J.E. and Wolf,A.L., Discovering Models of Software Processes from Event-Based Data. ACM

Transactions on Software Engineering and Methodology (TOSEM), 1998. 7(3): pp. 215-249.

 32. Corbett,J.C., Dwyer,M.B., Hatcliff,J., Pasareanu,C.S., Robby, Laubach,S., and Zheng,H., Bandera :

Extracting Finite-state Models from Java Source Code. In International Conference on Software

Engineering (ICSE). 2000. Limerick, Ireland: ACM. pp. 439-448.

 33. Cousot,P. and Cousot,R., Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction of Approximation of Fixpoints. In ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL). 1977. Los Angeles, CA: ACM. pp. 238-252.

 34. Cowan,C., Barringer,M., Beattie,S., and Kroah-Hartman,G., FormatGuard: Automatic Protection From

printf Format String Vulnerabilities. In USENIX Security Symposium. 2001. Washington, DC: USENIX

Association. pp. 191-200.

 35. Cowan,C., Beattie,S., Wright,C., and Kroah-Hartman,G., RaceGuard: Kernel Protection from Temporary

File Race Vulnerabilities. In USENIX Security Symposium. 2001. Washington, DC: USENIX Association.

pp. 165-176.

 36. Cowan,C., Pu,C., Maier,D., Hinton,H., Walpole,J., Bakke,P., Beattie,S., Grier,A., Wagle,P., and Zhang,Q.,

StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks. In USENIX

Security Symposium. 1998. San Antonio, TX: USENIX Association. pp. 63-78.

 37. Daily, M., IBM, Harvard Want Your PC for Solar Power Study. 8 A.D.

 38. Das,M., Lerner,S., and Seigle,M., ESP: Path-Sensitive Program Verification in Polynomial Time. In ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 2002. Berlin,

Germany: ACM. pp. 57-68.

 39. Duesterwald,E., Grupta,R., and Soffa,M.L., Demand-Driven Computation of Interprocedural Data Flow.

In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 1995. San

Francisco, CA: ACM Press. pp. 37-48.

 40. El-Ramly,M., Stroulia,E., and Sorenson,P., From Run-Time Behavior to Usage Scenarios: An Interaction-

Pattern Mining Approach. In ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD). 2002. Edmonton, Alberta, Canada: ACM Press. pp. 315-324.

 41. Engler,D.R. and Ashcraft,K., RacerX: Effective, Static Detection of Race Conditions and Deadlocks. In

ACM Symposium on Operating Systems Principles (SOSP). 2003. Bolton Landing, NY: ACM Press. pp.

237-252.

 42. Engler,D.R., Chelf,B., Chou,A., and Hallem,S., Checking System Rules Using System-Specific,

Programmer-Written Compiler Extensions. In Symposium on Operating System Design and

Implementation (OSDI). 2000. San Diego, CA: USENIX Association. pp. 1-16.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

102

 43. Engler,D.R., Chen,D.Y., and Chou,A., Bugs as Inconsistent Behavior: A General Approach to Inferring

Errors in Systems Code. In ACM Symposium on Operating Systems Principles (SOSP). 2001. Banff,

Alberta, Canada: ACM. pp. 57-72.

 44. Ernst,M.D., Cockrell,J., Griswold,W.G., and Notkin,D., Dynamically Discovering Likely Program

Invariants to Support Program Evolution. In International Conference on Software Engineering (ICSE).

1999. Los Angeles, CA: ACM. pp. 213-224.

 45. Festa,P., RSA: 56-bit Crypto Too Weak. in CNET News. October 23, 1997.

 46. Ganapathy,V., Jha,S., Chandler,D., Melski,D., and Vitek,D., Buffer Overrun Detection using Linear

Programming and Static Analysis. In ACM Conference on Computer and Communications Security (CCS).

2003. Washington, DC: ACM Press. pp. 345-354.

 47. Godefroid,P., Klarlund,N., and Sen,K., DART: Directed Automated Random Testing. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI). 2005. Chicago, IL: ACM. pp.

213-223.

 48. Godefroid,P., Levin,M.Y., and Molnar,D., Automated Whitebox Fuzz Testing. 2007, Microsoft MSR-TR-

2007-58.

 49. Havelund,K. and Pressburger,T., Model Checking Java Programs Using Java PathFinder. International

Journal on Software Tools for Technology Transfer (STTT), 2000. 2(4): pp. 366-381.

 50. Henzinger,T.A., Jhala,R., Majumdar,R., and Sutre,G., Lazy Abstraction. In ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL). 2002. Portland, OR: ACM. pp. 58-70.

 51. Horwitz,S., Reps,T., and Sagiv,M., Demand Interprocedural DataFlow Analysis. In ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE). 1995. Washington, DC: ACM.

pp. 104-115.

 52. Kinder,J., Ktzenbeisser,S., Schallhart,C., and Veith,H., Detecting Malicious Code by Model Checking. In

International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA).

2005. Vienna, Austria: Springer. pp. 174-187.

 53. Kiriansky,V., Bruening,D., and Amarasinghe,S., Secure Execution Via Program Shepherding. In USENIX

Security Symposium. 2002. San Francisco, CA: USENIX. pp. 191-206.

 54. Lal,A., Reps,T., and Balakrishnan,G., Extended Weighted Pushdown Systems. In International Conference

on Computer Aided Verification (CAV). 2005. Edinburgh, Scotland, UK: Springer. pp. 434-448.

 55. Larus,J.R., The Real Value of Testing. In ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA). 2008.

 56. Liblit,B., Cooperative Bug Isolation: Winning Thesis of the 2005 ACM Doctoral Dissertation Competition.

Lecture Notes in Computer Science. Vol. 4440. 2007: Springer.

 57. Liblit,B., Aiken,A., Zheng,A.X., and Jordan,M.I., Bug Isolation via Remote Program Sampling. In ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

 58. Liblit,B., Naik,M., Zheng,A.X., Aiken,A., and Jordan,M.I., Scalable Statistical Bug Isolation. In ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

 59. Lim,J. and Reps,T., A System For Generating Static Analyzers for Machine Instructions. In International

Conference on Compiler Construction (CC). 2008. Budapest, Hungary: Springer. pp. 36-52.

 60. Lim,J., Reps,T., and Liblit,B., Extracting Output Formats From Executables. In Working Conference on

Reverse Engineering (WCRE). 2006. Benevento, Italy: IEEE Computer Society. pp. 167-178.

 61. Loginov,A., Yahav,E., Chandra,S., Fink,S.J., Rinetzky,N., and Nanda,M.G., Verifying derefence safety via

expanding-scope analysis. In ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA). 2008.

 62. Loginov,A., Yong,S.H., Horwitz,S., and Reps,T., Debugging via Run-Time Type Checking. In International

Conference on Fundamental Approaches to Software Engineering (FASE). 2001. Genova, Italy: Springer.

pp. 217-232.

 63. Mariani,L. and Pezzè,M., Inference of Component Protocols by the kBehavior Algorithm. 2004, Università

degli Studi di Milano - Bicocca. Dipartimento di Informatica, Sistemistica e Comunicazione. Laboratorio di

Test e Analisi del Software, Milano. Technical Report LTA:2004:05.

 64. Melski,D. and Reps,T., Interconvertibility of a Class of Set Constraints and Context-Free Language

Reachability. Theoretical Computer Science, 2000. 248(1-2): pp. 29-98.

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

103

 65. Miller,B.P., Fredriksen,L., and So,B., An Empirical Study of the Reliability of UNIX Utilities.

Communications of the ACM, 1990. 32(12): pp. 32-44.

 66. Miller,B.P., Koski,D., Lee,C.P., Maganty,V., Murthy,R., Natarajan,A., and Steidl,J., Fuzz Revisited: A Re-

Examination of the Reliability of UNIX Utilities and Services. 1995, University of Wisconsin-Madison,

Madison, WI.

 67. Ramalingam,G., Field,J., and Tip,F., Aggregate Structure Identification and Its Application to Program

Analysis. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 1999.

San Antonio, TX: ACM Press. pp. 119-132.

 68. Reps,T., Balakrishnan,G., and Lim,J., Intermediate-Representation Recovery from Low-Level Code. In

ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation (PEPM).

2006. Charleston, SC: ACM Press. pp. 100-111.

 69. Reps,T., Balakrishnan,G., Lim,J., and Teitelbaum,T., A Next-Generation Platform for Analyzing

Executables. in Malware Detection, Christodorescu,M., Jha,S., Maughan,D., Song,D.X., and Wang,C.,

Editors. 2007, Springer: New York. pp. 43-61.

 70. Reps,T., Schwoon,S., Jha,S., and Melski,D., Weighted Pushdown Systems and Their Application to

Interprocedural Dataflow Analysis. Science of Computer Programming, 2005. 58(1-2): pp. 206-263.

 71. Schultz,M.G., Eskin,E., Zadok,E., and Stolfo,S.J., Data Mining Methods for Detection of New Malicious

Executables. In IEEE Symposium on Security and Privacy. 2001. Oakland, CA: IEEE Computer Society.

pp. 38-49.

 72. Sen,K., Marinov,D., and Agha,G., CUTE: A Concolic Unit Testing Engine for C. In European Software

Engineering Conference/ACM SIGSOFT International Symposium on Foundations of Software

Engineering (ESEC/FSE). 2005. Lisbon, Portugal: ACM. pp. 263-272.

 73. Sridharan,M. and Bodik,R., Refinement-Based Context-Sensitive Points-To Analysis for Java. In ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

 74. Sridharan,M., Gopan,D., Shan,L., and Bodik,R., Demand-Drive Points-To Analysis for Java. In ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA).

 75. Teitelbaum,T. and Reps,T., The Cornell Program Synthesizer: A Syntax-Directed Programming

Environment. Communications of the ACM, 1981. 24(9): pp. 563-573.

 76. Thomas Reps, On the sequential nature of interprocedural program-analysis problems. Acta Informatica,

1996. 33: pp. 739-757.

 77. Viega,J., Bloch,J.T., Kohno,T., and McGraw,G., ITS4: A Static Vulnerability Scanner for C and C++

Code. In Annual Computer Security Applications Conference (ACSAC). 2000. New Orleans, LA: IEEE

Computer Society. p. 257.

 78. Wagner,D., Foster,J.S., Brewer,E.A., and Aiken,A., A First Step Towards Automated Detection of Buffer

Overrun Vulnerabilities. In Symposium on Network and Distributed System Security (NDSS). 2000. San

Diego, CA: The Internet Society. pp. 3-17.

 79. Yang,J. and Evans,D., Dynamically Inferring Temporal Properties. In ACM SIGPLAN-SIGSSOFT

Workshop on Program Analysis for Software Tools and Engineering (PASTE). 2004. Washington, DC:

ACM. pp. 23-28.

 80. Doe, J.: Cloud Computing and Software Services (2009)

http://netlib.org/utk/people/JackDongarra/PAPERS/GridSolve_chapter.pdf

 81. Grandinetti (ed), Lucio. Grid Computing: The New Frontier of High Performance Computing. Elsevier

Science and Technology Books, Inc.. © 2005. Books24x7.

<http://common.books24x7.com/book/id_17807/book.asp> (accessed November 15, 2010)

 82. Abbas, Ahmar. Grid Computing: A Practical Guide to Technology and Applications. Cengage Charles

River Media. © 2004. Books24x7. <http://common.books24x7.com/book/id_7274/book.asp> (accessed

November 15, 2010)

 83. Silaghi, G., Araujo, F., Silva, L., Domingues, P., Arenas, A.: Defeating Colluding Nodes in Desktop Grid

Computing Platforms. Parallel and Distributed Processing, 2008. IPDPS 2008.

 84. Sottrup, C., Pederson, J.: Developing Distributed Computing Solutions Combining Grid Computing and

Public Computing

 85. Lattice Homepage. http://boinc.umiacs.umd.edu/

http://netlib.org/utk/people/JackDongarra/PAPERS/GridSolve_chapter.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4519061
http://boinc.umiacs.umd.edu/

N00014-10-C-0225 Safety In Numbers GrammaTech, Inc.

104

 86. Meyers, D., Bazinet, A., Cummings, M.: Expanding the Reach of Grid Computing: Combining Globus-

and BOINC-Based Systems (2007)

 87. McConnell, Steve. Code Complete, 2nd Edition. Redmond, Wa.: Microsoft Press, 2004.

 88. Parkhill, Douglas. The Challenge of the Computer Utility. Addison-Wesley, 1960.

 89. Bazinet, A.: The Lattice Project: A Multi-Model Grid Computing System (2009). University of Maryland

Masters Thesis

 90. Kondo, D., Javadi, B., Malecot, P., Cappello, F., Anderson, D.: Cost-Benefit Analysis of Cloud Computing

versus Desktop Grids. IPDPS '09 Proceedings of the 2009 IEEE International Symposium on

Parallel&Distributed Processing

 91. Andrzejak, A., Kondo, D., Anderson, D.: Exploiting Non-Dedicated Resources for Cloud Computing.

 92. Majumdar, R., K. Sen. Hybrid Concolic Testing. ICSE, 2007.

 93. Thakur, A., et al. ―Directed Proof Generation for Machine Code‖. CAV, 2010.

 94. Hoffmeyr, S. A., S. Forrest, A. Somayaji. Intrustion Detection Using Sequences of System Calls. J.

Computer Security, 1998.

